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ABSTRACT
The success of cloud computing has shown that the cost and con-
venience benefits of outsourcing infrastructure, platform, and soft-
ware resources outweigh concerns about confidentiality. Still, many
businesses resist moving private data to cloud providers due to in-
tellectual property and privacy reasons. A recent wave of hardware
virtualization technologies aims to alleviate these concerns by of-
fering encrypted virtualization features that support data confiden-
tiality of guest virtual machines (e.g., by transparently encrypting
memory) even when running on top untrusted hypervisors.

We introduce two new attacks that can breach the confidentiality
of protected enclaves. First, we show how a cloud adversary can
judiciously inspect the general purpose registers to unmask the
computation that passes through them. Specifically, we demonstrate
a set of attacks that can precisely infer the executed instructions
and eventually capture sensitive data given only indirect access to
the CPU state as observed via the general purpose registers. Second,
we show that even under a more restrictive environment — where
access to the general purpose registers is no longer available —
we can apply a different inference attack to recover the structure
of an unknown, running, application as a stepping stone towards
application fingerprinting. We demonstrate the practicality of these
inference attacks by showing how an adversary can identify differ-
ent applications and even distinguish between versions of the same
application and the compiler used, recover data transferred over
TLS connections within the encrypted guest, retrieve the contents
of sensitive data as it is being read from disk by the guest, and inject
arbitrary data within the guest. Taken as a whole, these attacks
serve as a cautionary tale of what can go wrong when the state of
registers (e.g., in AMD’s SEV) and application performance data
(e.g., in AMD’s SEV-ES) are left unprotected. The latter is the first
known attack that was designed to specifically target SEV-ES.
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1 INTRODUCTION
Of late, the need for a Trusted Execution Environment has risen
to the forefront as an important consideration for many parties in
the cloud computing ecosystem. Cloud computing refers to the use
of on-demand networked infrastructure software and capacity to
provide resources to customers [52]. In today’s marketplace, con-
tent providers desire the ability to deliver copyrighted or sensitive
material to clients without the risk of data leaks. At the same time,
computer manufacturers must be able to verify that only trusted
software executes on their hardware, and OS vendors need guaran-
tees that no malicious code executes upon boot. Likewise, clients
that use cloud services for their touted costs and security benefits
expect confidentiality of the information stored on cloud servers.

Fortunately, some of these requirements can be met with existing
offerings. For example, the ARM Trust Zone™ technology allows
customers to build robust Digital Rights Management systems,
Secure Boot technologies (e.g., Intel Trusted Execution Technol-
ogy [17] and the Trusted Platform Module [49]) guarantee that
only trusted software is loaded, and so-called Trusted Path mecha-
nisms [38] provide a secure interface for inputting sensitive data.
However, until recently, no practical solutions were available for
ensuring the confidentiality of cloud computation from the cloud
provider itself. Indeed, inquisitive cloud providers can readily in-
spect and modify customer’s information using virtual machine
introspection [22], and so to alleviate that threat, customers typi-
cally resort to business agreements to protect their assets.

Within the cloud computing arena, virtualization is the de facto
technology used to provide isolation of tenants. More specifically,
hypervisors are used to provide both temporal and spatial separa-
tion of virtual machines (VMs) for different customers running on
a single cloud instance. While the advent of hypervisor technology
has been a boon for cloud computing, its proliferation comes with
several risks. For one, bugs in the hypervisor can undermine the
isolation and integrity properties offered by these technologies and
thus clients utilizing the cloud infrastructure must place full trust
in the cloud provider.

To confront the problem of having fully trusted hypervisors, in
late 2016, Advanced Micro Devices (AMD) announced new secu-
rity extensions [27]. In particular, their Secure Memory Encryption
subsystem allows for full system memory encryption and aims to
ensure data confidentiality against physical attacks such as cold
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boot and DMA attacks [21]. A second extension, dubbed Secure
Encrypted Virtualization (SEV), couples memory encryption with
virtualization extensions that allows for per virtual machine mem-
ory encryption. SEV takes a bold step forward by aiming to protect
virtual machines not only from physical attacks, but from other vir-
tual machines and untrusted hypervisors. A third extension, coined
Secure Encrypted Virtualizationwith Encrypted State (SEV-ES) [26],
builds upon SEV and purportedly allows for encryption of all proces-
sor registers when the VM is paused. These new extensions provide
a private, per-virtual machine memory encryption solution that
is performed entirely in hardware, independently from the virtual
machine manager. Accepting the importance of cloud confidential-
ity, some cloud providers have recently announced the availability
of such security protections on their platforms1. Somewhat at odds
with this acceptance, however, is the fact that while cloud providers
stipulate that the customer is responsible for complying with an
acceptable use policy (AUP), they reserve the right to review the
applications and data for compliance with the AUP.

These new cloud platforms are built around a threat model where
“an attacker is assumed to have access to not only execute user level
privileged code on the target machine, but can potentially execute
malware at the higher privileged hypervisor level as well” [27].
The conjecture is that even under these circumstances, secure en-
crypted virtualization provides assurances to help protect the guest
virtual machine code and data from an attacker. In this paper, we
investigate the extent to which existing encrypted virtualization
technologies do in fact provide the desired security guarantees in
term of a guest VM’s data confidentiality. We argue that such an
investigation is particularly timely, as the complexities of hardware
implementations coupled with software deployment challenges and
push-to-market pressures, have led to commercially available tech-
nologies (like SEV) leaving general purpose registers unprotected.
Although such a design decision immediately raised concerns about
the potential for data leakage [32] when SEV was first announced,
these concerns were largely dismissed due to the seemingly chal-
lenging nature of mounting such an attack — namely that a mali-
cious hypervisor would still be completely “blind” in terms of the
guest VM’s memory state, thereby making such attacks difficult to
pull off in practice.

Unfortunately, we show that this is not the case. As we demon-
strate later, this design decision opens the door to a new class of
attacks that allow a cloud adversary to fully breach the confiden-
tiality of a protected guest VM by judiciously inspecting the state
of the underlying general purpose registers. To that end, we intro-
duce a new class of CPU register inference attacks that can precisely
infer a victim VM’s stream of executed instructions, and eventu-
ally leak sensitive data given only indirect access to the CPU state
as observed via the general purpose registers. Using SEV as our
main use case, we demonstrate the practicality of this new class
of inference attacks by showing how an adversary can efficiently
recover data being communicated over TLS connections within
the encrypted guest, retrieve the contents of sensitive data as it is
being read from disk by the guest, and inject arbitrary data within
the guest via Iago-style attacks [8], without any prior knowledge
about the memory state of the guest VM. We believe such attacks
1https://arstechnica.com/gadgets/2017/09/azure-confidential-computing-will-keep-
data-secret-even-from-microsoft/

directly apply to any security designs that leave register contents
unprotected.

Additionally, we present a novel application fingerprinting tech-
nique that allows a cloud adversary, or malicious tenant, to precisely
identify the applications running in the SEV-ES protected machine,
including details such as the version and the compiler used to build
the target application. To do so, we introduce a new binary-level
signature that captures the uniqueness of the layout of functions
in an application, demonstrate how to efficiently collect the data
from a performance measurement subsystem, and use the collected
data to perform matching on a data store of target applications (e.g.,
AUP forbidden services like Bitcoin mining).

In summary, our work makes the following contributions:
(1) We introduce a new class of register inference attacks for un-

veiling information in secure enclaves wherein the adversary
only has intermittent access to the CPU registers.

(2) We present concrete implementations and empirical analy-
ses of attacks (e.g., on SEV) that demonstrate how a cloud
adversary (or a tenant that exploits bugs in the hypervisor)
can unveil sensitive data of protected VMs.

(3) We introduce a new fingerprinting technique for precisely
identifying applications running in secure enclaves that do
not leak register state. For that, we leverage application per-
formance data to uncover structural properties of applica-
tions running in the guest VMs.

(4) We suggest mitigations for the uncovered weaknesses, as
well as directions for future work.

Our attacks not only validate the security community’s spec-
ulation that leaving general purpose registers unencrypted may
eventually lead to data leakage, but highlight the powerful nature
of the attacks that become possible in the context of secure virtual-
ization technologies when only limited information is available to
an adversary. Additionally, we show that designing secure virtual-
ization platforms is far more difficult than it seems — especially in
terms of cloud confidentiality. Our ultimate goal is to raise aware-
ness of this new class of inference attacks, with the hope that by
doing so, our work will better inform future design decisions.

2 BACKGROUND
For pedagogical reasons, we briefly recap the architecture avail-
able by AMD as it is representative of the state of the art in this
domain. Specifically, “Secure Encrypted Virtualization (SEV) in-
tegrates main memory encryption capabilities with the existing
AMD-V virtualization architecture to support encrypted virtual ma-
chines. Encrypting virtual machines can help protect them not only
from physical threats but also from other virtual machines or even
the hypervisor itself” [27]. The Secure Encrypted Virtualization En-
crypted State (SEV-ES) in addition to encrypting the main memory,
protects the guest register state from the hypervisor. When SEV-ES
is enabled, guest virtual machines are granted control over the exits
to the hypervisor and the data that is provided during the exit.

The Key management is handled by the Platform Security Pro-
cessor (PSP), thus software running on the main processor (i.e.,
hypervisor) can not access the memory encryption key. The PSP is
responsible for providing guest measurements during VM provi-
sioning, secure migration of the VM and guest VM debugging.
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Table 1: Comparison of secure enclave technologies and attacks.

Technology SGX SEV SEV-ES
Protected zone Enclave in userspace Virtual Machine Virtual Machine

Scope No access to registers Full access to guest registers Guest controls access to
registers

Control of
state transition Host controls the enclave Hypervisor controls

VMEXITs
Guest controls most

of VMEXITs

Available
information

Software executing
in the enclave,
page faults

Software executing in the enclave [36], [24],
Register state, page faults, debug events

Application performance
data (virtual addr, physical addr,

instruction type (branch, load/store))

Attacks Data in the enclave
[41], [30], [31], [53], [7]

Recovery of specific data[36], [24]
Replay of code [24]

Recovery of instructions executed [this paper]
Structure of an application [this paper]

For efficiency, memory encryption is performed using a high
performance AES engine in dedicated hardware in the memory
controllers. Each virtual machine is tagged with an associated en-
cryption key, and data is restricted to only the VM using that tag.
It is expected that the guest owner provides the guest image to
the cloud system. The firmware assists in launching the guest and
provides a measurement back to the guest owner. If the guest owner
deems this measurement correct, they in turn provide additional
secrets (such as a disk decryption key) to the running guest to al-
low it to proceed with start-up. The key is provided via a secure
key management interface to ensure that the hypervisor never
has access to it. Confidentiality of the guest is accomplished by
encrypting memory with a key that only the firmware knows. The
management interface does not allow the memory encryption key
or any other secret state to be exported outside of the firmware
without properly authenticating the recipient. This prevents the
hypervisor from gaining access to the keys2.

2.1 Register Inference Attacks
To re-cap, when SEV is enabled, the security processor is used
to automatically encrypt and decrypt the contents of memory on
transitions between the guest and the hypervisor. All that is left
unencrypted are general purpose registers in the virtual machine
control block and DMA pages used by the virtual input/output
devices. To see why this is a cause of concern, let us first assume
the expected deployment model where: the owner of the virtual
machine verifies the platformmeasurements, the disk image of the VM
is encrypted and cannot be read by the hypervisor, and the guest policy
is set to prevent the debug access to VM memory. Additionally, the
hypervisor has access to shared memory regions (e.g., input/output
data buffers), it can force the guest to exit, and it has access to the
Virtual Machine Control Block (VMCB) that includes unencrypted
processor registers (general purpose and machine specific).

With that in mind, recall that the CPU fetches instructions from
memory locations indicated by the instruction pointer, then decodes
and executes them. Optionally, the results can be stored in memory.
Different types of instructions (e.g., arithmetic, logical, and storage)
all operate on general purpose registers and memory locations.
Special classes of instructions such as floating point arithmetic or
hardware assisted encryption, operate on dedicated registers.

In Section 4, we show the security afforded by designs that leave
register contents unprotected can be undermined by judiciously

2This assumes a correct implementation of the PSP and so the vulnerabilities presented
by CTS-LABS [12] are out of scope.

inspecting the general purpose registers and unmasking the com-
putation that passes through them. By passively observing changes
in the registers, an adversary can recover critical information about
activities in the encrypted guest. Naïvely, one could do this by single
stepping a target process from within the hypervisor, but doing so
would incur a significant performance penalty that would be easily
noticeable in the guest. Moreover, the amount of data collected (i.e.,
register contents) would quickly become overwhelming.

2.2 Structural Inference Attacks
When SEV-ES is enabled, the register state in the Virtual Machine
Control Block is no longer available. SEV-ES not only encrypts but
also protects the integrity of the VMCB, thus preventing attacks on
the register state. A new structure called Guest Hypervisor Control
Block (GHCB) [4] acts as an intermediary between the guest and
the hypervisor during hypercalls. The guest dictates, via a policy,
what information is shared in the GHCB. Furthermore, from a
design perspective, VMEXITs are classified as either Automatic
(AE) or Non-Automatic (NAE); AE events do not require exposing
any state from the guest and trigger an immediate control transfer
to the hypervisor. Performance measurement events, such as the
delivery of an interrupt when the data is ready, are automatic events.
In Section 4.3, we show how one can use data provided by the
Instruction Based Sampling (IBS) subsystem (e.g., to learn whether
an executed instruction was a branch, load, or store) to identify the
applications running within the VM. Intuitively, one can collect
performance data from the virtual machine and match the observed
behavior to known signatures of running applications.

Before delving into the particulars of our attacks, we first review
some pertinent related work to help set the broader context. For
ease of presentation, Table 1 provides a high-level overview of
the protection provided by commercial offerings, the information
leaked under each offering, and the types of attacks known to date.
As noted we assume the ability to control the hypervisor running
the secured VMs, but not any prior knowledge of the software
running inside the VMs. The attack against SEV protected VMs
requires access to general purpose registers (in VMCB), as well as
the ability to control second level translation page faults. The attack
against SEV-ES only assumes the availability of information from
the performance measuring subsystem (i.e., IBS).

3 RELATEDWORK

Side-Channels. To date, numerous attacks (e.g., [29, 30, 33, 35,
50]) have been proposed for leaking information across security do-
mains by leveraging architectural or micro-architectural artifacts.
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Lee et al. [31], for instance, demonstrated the feasibility of fine
grained control flow attacks in an enclave. The attack takes advan-
tage of the fact that SGX does not clear the branch history when
switching security boundaries. Like other attacks [7, 41, 45, 58] on
SGX, the adversary model assumes the attacker knows the possible
flows of a target enclave program (e.g., by statically or dynamically
analyzing its source code or binary).

Using similar knowledge, Xu et al. [58] introduce so-called control-
led-channel attacks to extract information from victim enclaves.
Such attacks exploit secret-dependent control flow and data ac-
cesses in legacy applications. The attacks are based on the observa-
tion that a processor in enclave mode accesses unprotected page
table memory during the address translation process, and so a
page table walk can be used to identify which pages were accessed.
Specifically, they rely on sequences of page faults to identify specific
memory addresses, and show that the page fault side channel is
strong enough to extract sensitive data from enclave applications.

Wang et al. [53] provide a review of memory and cache side
channels, and propose a series of cache-line attacks related to ad-
dress translation in CPU hardware. Their attacks achieve spatial
granularity via cross-enclave PRIME+PROBE [20] attacks or cross-
enclave shared DRAM attacks (e.g., [28, 40, 57]) to extract sensitive
information. More recently, Kocher et al. [29] and Lipp et al. [33]
introduce ingenious micro-architectural attacks that trick the pro-
cessor into speculatively executing instructions that ultimately leak
information about a victim’s memory address space. The interested
reader is referred to [6, 34, 46] for excellent surveys. As articulated
in Table 1, these attacks are unrelated to what we study herein.

Attacks on SEV. Most germane are the ideas presented by Het-
zelt and Buhren [24] and Sharkey [44]. Hetzelt and Buhren [24]
analyzed the design documents for SEV and posit a series of attacks.
The most powerful of their attacks tries to force leakage of infor-
mation by introducing an interruption of the guest execution after
protected data has been transferred from an attacker controlled
memory location into an unencrypted register. The authors show
how the gadgets used to force the vmexit can be located via static
analysis, and used later in an online attack. Essentially, Hetzelt and
Buhren [24] argue that an adversary can perform a linear sweep of
memory where the contents of the VM are dumped by forcing a
vmexit to read the data moved to the unencrypted register.

Although the attack is plausible, it has several practical limita-
tions. For one, it assumes the adversary has in-depth knowledge
of the guest’s operating system (e.g., the kernel binary layout). In
fact, lack of knowledge of exact offsets renders the attacks [24,
Section 5.1] infeasible. Most critically, the attack requires intricate
knowledge of the memory allocation process in order to allocate
an unencrypted page in the guest or to modify an encrypted page
to remove the C-bit [27] that enables memory encryption.

Sharkey [44] discussed a similar idea at BlackHat, but the tech-
niques for undermining SEV either bypass the load-time integrity
checks (e.g., to install a rootkit) or intercept the AES-NI instructions
(to read the register contents) by generating an exception anytime
an AES-NI instruction is executed. The adversarial model also as-
sumes no encrypted storage or attestation is in place, which does
not conform to AMD’s envisioned deployment model.

Alternatively, Du et al. [14] explored the possibility of chosen
ciphertext attacks against SEV, based on theoretical weaknesses in

the tweak-based algorithm suggested by AMD as a replacement to
AES-CTR mode. They argue that attacks can be designed concep-
tually based on the assumption that i) data integrity protection is
not provided in SEV and ii) the tweak algorithm uses host physical
addresses instead of VM physical addresses;3 the combination of
which allows an adversary to swap the VM addresses of two en-
crypted pages and perform chosen ciphertext attacks under specific
conditions. As a mitigation, the authors recommend the use of a
different key derivation function (namely NIST SP 800-108). Like
the work of Hetzelt and Buhren [24], their attack was only a simu-
lation and not on the SEV-enabled hardware that became available
in late 2017. Most recently, Morbitzer et al. [36, 37] explored the
idea of using the applications running within the protected enclave
to leak the data from the VM. This attack hinges on the presence of
an application that serves data from the VM to the outside (e.g., a
web server) and uses the second level address translation to replace
the memory pages of the content to be served, where the chosen
pages are those an adversary wants to leak.

Unlike these works, we present a comprehensive technique for
identifying the instructions executed in the encrypted guest given
only a trace of changes of general purpose registers. Our analyses
are on the real hardware and we pay particular attention to general-
izable techniques (e.g., that go beyond simply peeking into AES-NI
instructions [44]) that can be stealthily performed.

Attacks on SEV-ES. To the best of our knowledge, there are
no attacks specifically designed for SEV-ES. Although the attack on
SEV by Morbitzer et al. [36, 37] does not depend on any state that
would be encrypted under SEV-ES, success of that attack hinges
on the presence of a remote communication service running in the
target VM. Specifically, like Du et al. [14], Morbitzer et al. [37] take
advantage of the fact that since (i) SEV-encrypted VMs lack integrity
protection, and (ii) the hypervisor is responsible for second-level
address translation, a malicious or compromised hypervisor could
leverage the communication service to learn host physical address
mappings in main memory, change the memory layout, and subse-
quently leak the contents of memory. Of course, re-mapping the
memory for applications in flight can easily lead to crashing the
affected applicatons. We have no such limitation. Moreover, such
an attack is far from stealthy, requiring hundreds of thousands of
requests over several hours, during which any visitor requesting
data from the attacked service would notice the nonsensical re-
sponses [37]. Our attacks, by contrast, can be perpetrated with only
a handful of requests, and incur little to no user-perceived delay.

4 APPROACH
One challenge with our register inference attacks is that millions of
data points might need to be collected and processed. To alleviate
that, we take a white-box approach. The intuition is that since only
a small part of a target process’ computation needs to be closely
monitored, we can first identify that part using coarse-grained
monitoring, and once the computation of interest is about to begin,
switch to fine-grained monitoring. The key is knowing when to
switch modes.

As we show later, white-box analysis can be used to build pro-
files of applications of interest (e.g., web servers) in the guest by

3We have been unable to confirm this is indeed true in SEV.
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monitoring system calls within the hypervisor. Having done so,
white-box analysis can further be used to hone in on just the right
parts in the execution of the target application and perform limited
introspection of the registers. For example, after identifying an ap-
plication as a web server, one can focus on routines responsible for
sending and receiving network traffic. For that, the steps required
to recover information in the encrypted guest include:

(1) Identifying the guest VM operating system. This can be
achieved in several ways, for example, by inspecting the us-
age of Model Specific Registers (different operating systems
tend to use different ranges of virtual memory addresses for
kernel entry points) or identifying system call sequences
(e.g.,execve(),brk() are the first calls invoked by a new
Linux process).

(2) Applying OS specific heuristics to identify targets (for exam-
ple, using the sequence: [socket(),bind(),listen()] to
identify network servers).

(3) Profiling and matching applications of interest at runtime,
e.g., using coarse-grained system call tracking.

(4) Using a combination of instruction recovery techniques and
white-box analysis to determine the best point to trigger the
inspection of critical code and recover the plaintext (e.g., the
messages received from a victim server).

Any mechanism to selectively inspect a target process (i.e., Step
4) must be done with stealth. We refer to this process as hyper-
stepping (§4.2). As a part of our exploration of the feasibility of
conducting inference attacks on SEV-enabled platforms, we inves-
tigated several approaches to trapping system calls made in the
target VM, including using the Monitor Trap Flag to exit to hypervi-
sor, using second level translation (e.g., Intel’s EPT and AMD’s RVI
hardware assisted paging (HAP) page faults), disabling the system
call instruction, and using hardware debug registers.

Using the Monitor Trap Flag is not an option as it is unavailable
in the AMD architecture. Although HAP is an option, we discarded
it because we wanted to limit the amount of exits to the hypervisor
associated with handling of a system call. Additionally, the use of
the invalid opcode exception implies the ability to read the opcode of
the failing instruction, but that is unavailable when SEV is enabled.
Thus, we settled on using hardware debug registers.

Since OS and application fingerprinting using system calls has
been the subject of much prior work (e.g., [16, 42, 54]), we focus
the remaining discussion on steps 3 and 4.

4.1 Efficiently tracking system calls
To track guest OS system calls from within the hypervisor, one
needs to inspect the guest state at the entry and exit points of
the system call. Inspection is needed not only to determine which
system call is being issued and its parameters, but also the result
of the system call. Modern operating systems use fast system call
instructions (SYSENTER for 32 bit and SYSCALL for 64 bit OSes) to
transition to the kernel and execute the system calls. The virtual
address of the kernel entry point is specified in a special Model
Specific Register (MSR), and the virtual address of the system call
return address is stored in the RCX register during the SYSCALL
instruction invocation. Thus, using two hardware debug registers
one can effectively trace guest OS system calls. Note that in contem-
porary systems, the hypervisor ultimately controls the access to the

2

Caller function

int main() {

int a = 3;

int c = expand(a);

}

Callee function

int expand(int i) {

return i+1337;

}

sub  esp, 8

mov [ebp-4], 3

mov eax, [ebp-4]

push eax

call 0x1030

push ebp

mov ebp, esp

mov eax, [ebp+8]

add  eax, 0x539

pop  ebp

ret

1

3

4

5

6

7

Figure 1: C source with its corresponding assembly code snippet.

debug registers, and so if the guest OS attempts to inspect or use
them, the hypervisor can still retain control and evade detection.

4.2 Hyper-stepping
Once the target has been identified using system call tracking, the
next task is to observe and control the execution of the critical code.
In our case, the code of the critical section is executed an instruction
at a time — essentially, the hypervisor acts as a debugger single step-
ping the execution in the guest VM. Since the memory of the guest
is encrypted, the hypervisor single stepping execution in the guest
is not capable of reading the process memory and disassembling the
executed instruction. The only available information is the outcome
of the execution as observed in the general purpose registers. Yet,
that information can significantly aid our understanding of the exe-
cuted instruction. Equally important is the fact that the hypervisor
is capable of modifying the guest’s state by carefully manipulating
the general purpose registers. In particular, modifying the contents
of registers (§5) enables sophisticated attacks against the guest VM.

The success of our attacks hinges on our ability to correctly
identify which instructions were executed in the guest. In certain
cases, we require additional auxiliary information, in particular,
knowledge ofwhat specific registers (e.g., EDI vs ECX) were accessed
and the type (read or write) of memory access. Our approach for
gathering that insight is presented next.

4.2.1 Unmasking instructions “in the dark”. The high-level idea
centers on the observation that by inspecting the state of the CPU
registers one can try to infer the executed instructions by mapping
the outcomes seen in the registers to known instruction semantics.
For instance, consider the simple C program and the trace of its
execution shown in Figure 1.

For presentation purposes, we chose a simplistic program that
adds a constant value to an integer and returns the result. The
depicted execution trace omits the setup and the tear down of the
program. This trace represents the instructions executed by the
CPU, not the instructions in the program image (i.e., in memory
or on disk). For the discussion that follows, we start our analysis
with the call instruction in the caller (reference line ➀) in Figure 1.
The depiction in Figure 2 illustrates how one can reconstruct the
execution given the luxury of observing seven steps. We denote an
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observation window as a pair of two directly connected register
sets. Each numbered step represents an execution of an instruction,
and the register sets represent the CPU state.

Registers

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF818
EDI: 0x0

EBP: 0xF824

EFLAGS: 
0x202

EIP: 0x1011

� � �

Instruction pointer
change of 0x19

Decrease of Stack
Pointer

Single byte instruction. 
Decrease of Stack 

Pointer

Two byte long
instruction.New 

value of Frame Pointer
 equals Stack Pointer

 

Initial 
state

call 0x1030 call 0x1030
push REG

call 0x1030
push ebp
mov ebp, esp

Inferred instructions:

Registers
EAX: 0x0

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF814
EDI: 0x0

EBP: 0xF824

EFLAGS: 
0x202

EIP: 0x1030

EAX: 0x0

Registers

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF810
EDI: 0x0

EBP: 0xF824

EFLAGS: 
0x202

EIP: 0x1031

EAX: 0x0

Registers

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF810
EDI: 0x0

EBP: 0xF810

EFLAGS: 
0x202

EIP: 0x1033

EAX: 0x0

� � ��

Three byte long
instruction,  

no change of 
register value

Five byte long
instruction,  

New value of EAX, 
Parity flag set

One byte long
instruction, change
of Stack and Frame

Pointers

Instruction pointer 
decrease, 

increase of Stack 
Pointer

Inferred instructions:
call 0x1030
push ebp
mov ebp, esp
3-byte-unknown

call 0x1030
push ebp
mov ebp, esp
3-byte-unknown
5-byte arithmetic/logic 
using a four byte 
constant

call 0x1030
push ebp
mov ebp, esp
3-byte-unknown
5-byte arithmetic/logic
using a four byte
constant
pop ebp

call 0x1030
push ebp
mov ebp, esp
3-byte-unknown
5-byte arithmetic/logic
using a four byte
constant
pop ebp
ret

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF810
EDI: 0x0

EBP: 0xF810

EFLAGS: 
0x202

EIP: 0x1036

EAX: 0x0

Registers

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF810
EDI: 0x0

EBP: 0xF810

EFLAGS: 
0x206

EIP: 0x103B

EAX: 0x53C

Registers

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF814
EDI: 0x0

EBP: 0xF824

EFLAGS: 
0x206

EIP: 0x103C

EAX: 0x53C

Registers

EBX: 0x0
ECX: 0x0
EDX: 0x0
ESI: 0x0

ESP: 0xF817
EDI: 0x0

EBP: 0xF824

EFLAGS: 
0x206

EIP: 0x1016

EAX: 0x53C

Figure 2: Example showing the inferred instructions at each stage.

In step ➀ in Figure 2, the advancement of the instruction pointer
(register EIP) by more than 15 bytes indicates the presence of a
control flow instruction. Given the decrease of the Stack Pointer
(register ESP) we can identify this instruction as a call instruction.
In step ➁, the instruction pointer increases by one and the value
of Stack Pointer is decreased by 4. This allows us to identify the
instruction as a push. However, we cannot determine which register
has been pushed onto the stack just yet. In step➂, the EIP increment
indicates an execution of an instruction that is two bytes long.
Inspection of the values of registers reveals that after the instruction
is executed, the stack frame and stack pointer have the same value.
This implies an assignment of the value from the stack pointer
register to stack frame (register EBP) — i.e., a mov instruction. Hence,
we can assume that the register pushed onto the stack in step ➁

was the Frame Pointer.
Notice that in step ➃, the only observed change is the advance-

ment of the instruction pointer by three. This behavior is indicative

of a load/store/arithmetic/logical type of instruction where both
operands refer to registers. The observation of the unchanged Flag
register suggests load/store type of instruction. In step ➄, the in-
struction pointer advances by five bytes, the accumulator register
EAX has a new value 0x53c, and the Parity Bit of the Flag Register
is set. Given the computed length and the instruction outcome, we
can surmise that this is due to loading a constant value. Change of
the Parity Bit indicates an arithmetic operation. In step ➅, a single
byte instruction that decreases the value of the Stack Pointer and
the change of the value of the Frame Pointer uniquely identify the
instruction as a pop of the Frame Pointer register. This confirms the
identification of the instruction in step ➁. In step ➆ the decrease
of the instruction pointer indicates a control flow instruction. The
increase of the stack pointer means that this is a ret instruction.

In that example, we can uniquely identify five out of seven in-
structions. We also narrowed down the set of possible instructions
executed in steps➃ and➄. Assuming that the program follows stan-
dard C calling conventions, identification of the instruction in step
➃ is easy; moving the function argument from the stack to register
EAX in this case does not change the value of the register, because
in the caller the function argument was first placed in the register
EAX, then pushed onto the stack. Unfortunately, without additional
information, an exact identification of the instruction executed in
step ➄ is not possible because several instructions (e.g., add, sub,
or, xor) are all likely based on the observed trace.

4.2.2 Memory access identification. In the case of instructions that
produce no observable change of the registers, one needs additional
insights regarding the characteristics of the instruction. For that,
the hypervisor can attempt to distinguish the types of memory
access triggered by the guest. That can be done by intercepting
the page fault exception and forcing the guest to re-execute the
instruction with specific general purpose register values aimed to
trigger a memory access violation. Recall that page fault handlers
provide both the virtual address where the fault occurred as well as
the error code indicating the type of access. Thus, forcing the guest
to re-execute the instruction provides an opportunity to determine
the computation of the effective address used by the instruction,
that is, which registers are used in memory addressing.

The effective address is computed as Effective Address = Base
+ (Index*Scale) + Displacement, where Base and Index are values
stored in any general purpose register, Scale is a value of 1,2,4 or 8
and Displacement is an 8-bit, 16-bit, or 32-bit value encoded as part
of the instruction. For example, the instruction mov [edi+ecx] +
0x10, eax will write to the memory at the location edi+ecx+0x10.

To learn the effective address, we assume that the zero page
is not allocated and can be used to trigger page faults. Then, to
identify whether the instruction is accessing memory, we follow
the approach in Algorithm 1. Of importance are the steps taken in
lines 7-12 where the hypervisor traps the page fault, inspects the
fault code and infers whether the unknown instruction attempted
to read or write memory.

To determine the specific registers and the displacement value
used to address memory we solve a system of linear equations for
two unknowns using unique prime values (acquired in lines 6 and 9).
The added capability of memory access identification improves our
ability to unveil instructions by over 30%.
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Algorithm 1 Identify memory access type (i.e., read or write) and
the specific register being accessed
1: Save the current execution state
2: Enable guest page fault interception
3: Set registers to unique prime values
4: Allow guest to re-execute the instruction
5: if Fault Type == Page Fault then
6: Save accessed memory address
7: Set registers to unique prime values
8: Allow guest to re-execute the instruction
9: Save accessed memory address
10: else
11: No memory access
12: end if
13: Restore the saved execution state

4.3 Building application fingerprints
In our approach, we use data collected via Instruction Based Sam-
pling (IBS) [13] to identify the applications running within an en-
crypted VM. Instruction Based Sampling was introduced to provide
detailed application performance information. IBS provides sam-
pling information, collected once every t instructions. After an
instruction is sampled, the information is stored in a set of model
specific registers and a non-maskable interrupt is raised to indicate
the availability of the instruction data. IBS offers two modes of
operation: tracking instruction fetches (coined fetch sampling) and
instruction execution performance (coined op sampling). Samples
collected via fetch sampling detail performance of an instruction
fetch whereas samples collected in the op sampling mode provide
information on the retired instructions including the virtual address
of the retired instruction, the type of instruction (e.g., branch, load,
store), the virtual and physical addresses of accessed memory, the
virtual address of the branch target, the type of the branch and the
result of branch prediction. Note that we use the information on
retired instructions because the data collected in fetch sampling
mode is speculative (i.e., the samples may represent instructions
that were executed but not retired).

While op sampling may seem well suited for our goals, there
are several limitations with using IBS. For one, the collection of
the sample and the notification of its availability are asynchronous,
resulting in skid between the time the measurement was taken
and the time the sample is made available, thus decreasing the
maximum sampling frequency. Additionally, IBS samples have no
indicator that helps distinguish whether they originate from the
kernel or from userspace. Alas, we must find a way to pinpoint the
source of the sampled events (i.e., kernel versus userspace) in order
to isolate the process from which the sample was drawn. Later on,
we address how we overcome these hurdles. Before doing so, we
describe our approach for IBS-based application fingerprinting.

4.3.1 IBS-based fingerprinting. The data obtained using IBS op
sampling mode must be preprocessed to separate events from dif-
ferent sources. In what follows, we assume that the entity con-
trolling the hypervisor (i.e., cloud provider or a malicious tenant
that compromised it) has knowledge of the host operating system.
Given that assumption, we can safely discard all samples from the
known address range of the host kernel. All the remaining samples
then belong to guest VMs. Knowing, for example, that in Linux
the OS kernel is always mapped in the upper 48 bits of the address

Algorithm 2 Matching IBS based fingerprints
1: for all signatures ®r in R do
2: for all ri ∈ (r1 . . . rm ) do
3: if All distances in ®u match sums of consecutive distances starting from ri

then
4: Fingerprint ®u matches application ®r
5: end if
6: end for
7: end for

space, samples from the guest kernel can also be discarded. Addi-
tionally, based on the knowledge that binaries and shared libraries
are mapped to distinct memory ranges, the remaining samples can
be further separated. Specifically, we cluster the samples into 32 MB
bins,4 starting from the lowest observed virtual address. Given each
bin, we select the samples containing return instructions and create
an ordered list of their virtual addresses va0 . . .vak . From that list
we generate a fingerprint of the unknown application,u, as a vector
of distances ®u = (d1 . . .dk ) where di = vai −va1. Essentially, this
gives us a peek into the binary layout of an unknown application.
Said another way, we measure distances from some function bound-
ary early on in an application to other function boundaries in later
parts of that application. Note that k varies based on the number of
return instructions observed during the period we collect IBS data.

4.3.2 Application reference set. An application reference describes
the layout of all functions in a given binary. Specifically, we leverage
the distance between function returns to describe the layout. The
reference is a vector ®r = (r1, r2, . . . , rm ) of distances between all
the return instructions in a binary. The size, m, of the reference
depends on the number of functions in an application and can range
from a few up to tens of thousands.

4.3.3 Fingerprint matching. Fingerprint matching proceeds as one
would expect: we identify the unknown image by the sequence
of distances between the observed return instructions collected
using IBS compared with an off-line reference of target applica-
tions curated using binary disassembly. We denote that datastore
containing the full fingerprints for all applications of interests (i.e.,
[ ®r1, . . . , ®rN ] as R. Essentially, ®u is a binary-level fingerprint that
captures a small fragment of the unknown application’s structure.
The fingerprint in Figure 6 (in the Appendix) consists of two dis-
tances computed from a set of three addresses of return instructions
in the IBS data.

Inputs: (i) A reference database R of application layouts. Each
layout in R is a vector of distances between successive returns. (ii)
A vector ®u of distances between the first seen return instruction
and all the other return instructions within a bin. The crux of the
Algorithm 2 lies in line 3, where a comparison is made between
consecutive distances in ®r and observed distances in ®u. The search
starts with the first distance, ri=1 from ®r then adds consecutive
distances from ®r to test if they can match distances in ®u. If any
of the distances from ®u cannot be matched to a sum of distances
from starting position ri , the search restarts at ri+1. The unknown
vector is considered identified if, and only if, all the distances from
®u are matched to sums of distances from ®r . The example presented
in Figure 6 is a positive match: distance d1 is equal to the sum of
r3 + r4 + r5 + r6 and d2 is equal to r6.

4Value derived from an empirical evaluation of the average size of Ubuntu binaries.
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5 EVALUATION
To validate our ideas regarding the underlying weaknesses of a plat-
form where registers are left unencrypted, we first show how we
can efficiently recover data being sent over TLS-protected connec-
tions within the encrypted guest, retrieve the contents of sensitive
data being read from disk by the guest, and inject arbitrary data
within the guest by connecting to the target VM to perform Iago-
style attacks [8]. The latter gives adversaries a foothold on the
target VM, allowing them to inspect it at will. Afterwards, we turn
our attention to application fingerprinting attacks on SEV-ES.

Experimental Platform
All experiments were conducted on commercially available hard-
ware. We used a Silicon Mechanics aNU-12-304 server with dual
Epyc 7301 processors and 256 GB of RAM. The machine runs
Ubuntu 16.04 with a custom 64-bit Linux kernel v4.15. The custom
kernel and QEMU were downloaded from AMD’s code repository.5
Guest VMs were assigned to a single vCPU with 2 GB of RAM,
and run Ubuntu 16.04 with the same kernel as the host. Our VM
introspection mechanism is implemented as an extension of the
KVM kernel modules.

5.1 Attack on SEV: Reading TLS data
To demonstrate the viability of an attack on a network server within
a SEV-enabled enclave, we show how to unveil content served over
HTTPS. We show how given the encrypted memory and encrypted
network traffic, a malicious hypervisor can recover the plaintext
communication. To explain how the attack works, we briefly review
the architecture of Nginx (the sample webserver) and the character-
istics of the spawned process (that we rely on to create triggers used
to extract the information from encrypted network connections).

In Nginx, an initialization process creates new sockets (socket())
and binds to HTTP/HTTPS ports (bind(), listen()). After setting
up the socket, the initialization process clones itself (clone()) to
create themaster process. Themaster process then clones (clone())
itself to create worker processes that handle incoming connections.
The worker process waits for the incoming connections (epoll()),
then accepts an incoming connection (accept()), transfers data to
the client (recvfrom(), writev()), and finally terminates the con-
nection (close()) and returns to the waiting state. We hyper-step
in between the recvfrom() and writev() system calls to recover
the data processed by the server. A pictorial representation is shown
in Figure 5 in Appendix C. In TLS secured connections, the worker
process conducts a handshake [43] and starts transmitting data
when it is complete. The instruction instrumentation is performed
only on the data exchange part of communication to reduce the pro-
cessing overhead. The exchanged data is decrypted and encrypted
using the hardware AES engine that developers can utilize via the
AES-NI instruction set extension. Thus, observation of the XMM
registers allows us to extract the plaintext of the request and the
response as well as the AES keys. In the experiment, the server
used the Diffie-Hellman key exchange protocol and encrypted the
traffic using 128-bit AES in Galois Counter mode. (OpenSSL cipher
suite 0x9e: DHE-RSA-AES128-GCM-SHA256.)

5Available at https://github.com/AMDESE/AMDSEV/.

Recovered 
Instructions

Observed 
Sequence

RIP
Delta

Register
 change

Memory 
Access

loopstart:
… repeated encryption routines…

 vpxor  xmm2,xmm1, [rdi] 4 xmm2 read

vaesenc xmm11,xmm11,xmm15 5 xmm11
vpxor  xmm0,xmm1, [rdi+0x10] 5 xmm0 read
vaesenc xmm12,xmm12,xmm15 5 xmm12

vpxor  xmm5,xmm1, [rdi+0x20] 5 xmm5
vaesenc xmm13,xmm13,xmm15 5 xmm13 read
vpxor  xmm6,xmm1, [rdi+0x30] 5 xmm6 read

vaesenc xmm14,xmm14,xmm15 5 xmm14
vpxor  xmm7,xmm1,[rdi+0x40] 5 xmm7 read
vpxor  xmm3,xmm1,[rdi+0x50] 5 xmm3 read

vmovdqu xmm1, [r8] 5 xmm1 read
vaesenclast xmm9,xmmv9,xmm2 5 xmm9

vmovdqu xmm2, [r11+0x20] 6 xmm2 read

vaesenclast xmm10,xmm10,xmm0 5 xmm10
vpaddb xmm0,xmm1,xmm2 4 xmm0
mov[rsp+0x78],r13 5 write

lea    rdi,[rdi+0x60] 4 RDI+96
vaesenclast xmm11,xmm11,xmm5 5 xmm11

vpaddb xmm5,xmm0,xmm2 4 xmm5
mov[rsp+0x80],r12 8 write
lea    rsi,[rsi+0x60] 4 RSI+96
… repeated encryption routines…
jmp -0x52b -1323

L 
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a 
d

T 
r 
i 
g 
g 
e 
r

Figure 3: Abstraction of going from observed register changes to in-
ferred instructions of the encryption loop of the HTTPS response.
The underlined instructions are those inferred using the contextual
information within the scope of the analysis.

When the hypervisor detects the sequence of system calls that
indicate the server is about to receive data from a network socket,
we transition to the second stage of the attack. In stage two, the
interception of the SSL_read function allows us to unmask the in-
structions that process the plaintext of the request and the response
sent over the TLS protected network connections — all via exami-
nation of the general purpose registers. We note that unmasking of
the instructions significantly simplifies the process of recovering
the encrypted data in that it allows us to simply copy the plaintext
from the register when the decryption is complete, rather than sift
through intermediary values of the encryption process.

5.1.1 Under the hood. Recall that our techniques for recovery of
the instructions shown in Figure 3 leverage our instruction identifi-
cation (§4.2.1) methodology and memory access detection (§4.2.2)
technique. For brevity, we skip the bulk of the encryption and focus
the reader’s attention on the sections responsible for loading data
from memory, storing the results, and the loop construct.

Using the memory access tracking, we identify access patterns
of the instructions in the trace. Armed with the knowledge of the
memory accesses one can easily identify mov instructions, where
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Table 2: Overhead of the TLS recovery PoC

Size Baseline (µs) System call
tracking (µs)

Full PoC
(µs)

8k 4539 6432 6476
32k 7604 8107 8515
128k 13801 13383 14591

the destination operand is memory, and distinguish instructions
that load register contents from memory from those that perform
arithmetic or logical operations. Finally, given that our coarse grain
tracking was used to trigger hyper-stepping, we can use that knowl-
edge to match the recovered set of instructions as the loop of the
CRYPTO_128_unwrap function.

With the acquired knowledge of the code layout, we can set a
new finer-grained trigger point, ∆’ (lea rdi, [rdi+0x60]), to
the location in the loop where accessing the registers will disclose
the plaintext in the XMM registers. The underlined instructions in
Figure 3 are those inferred using the contextual information within
the scope of the instruction under analysis.

To be sure that we reached the critical section of the code where
we can extract the plaintext from the registers, we verify that the
trace observedwhile hyper-stepping contains the sequence: [RIP+4,
RDI+96; RIP+4, new value of XMM11; RIP+4, new value of
XMM5; RIP+8, memory write; RIP+4,
RSI+96].6 Once verified, we copy the contents of the XMM reg-
isters and reassemble the HTTPS stream.

5.1.2 Results. To gain insights into the run time overhead, we
averaged the processing time of 25 requests for varying sizes of
requested data. The average round trip time for a packet between
the client and the server in our setup was 5ms (5000 µs). Our results
provided in Table 2 show that the user perceived delay is slightly
less than 1ms per 32 kb of data. The overhead would be even lower
if the adversary only needs to instrument the request to obtain the
requested URL, user credentials and any other information that is
necessary to reissue the request.

5.2 Attack on SEV: Injecting Keys
Next, we examine how a malicious hypervisor can thwart the full
disk encryption and the memory encryption that are used by the
guest. To that end we demonstrate how the malicious hypervisor
can intercept data from an encrypted hard drive, and inject faux
data into the datastream. For pedagogical purposes, we focus on
the read() system call and how it is used to provide access to
various devices. For the remaining discussion, it suffices to know
that control flows from the system call entry point through the
Virtual File System (VFS) and the extended file system drivers to
a file system agnostic function (i.e.,copy_user_generic()) that is
responsible for copying the data between kernel space and user
space memory. For all file systems supported in the Linux kernel,
we found that this generic function checks the kernel data structure
for information on the available CPU extensions and based on that
information invokes a specific low level assembly function.

An in-depth analysis of the kernel initialization functions showed
that a single invocation of the CPUID instruction is used only
to specify the processor features for the purpose of selecting the

6Static analysis of the Nginx binary and the 35 shared libraries it loads revealed that
the sequence we use is unique.

memory copy instruction. Specifically, the OS can be forced to
use less efficient register-to-register copy operations instead of
fast string operations by masking certain bits in the results of the
CPUID instruction. For example, in the Linux kernel, the decision
to use specific memory copy instructions is based on available CPU
features.7 Moreover, the check of the availability of the CPU specific
features8 can be manipulated by spoofing the value returned by
the CPUID instruction to force the kernel not to use memory to
memory copy (i.e., rep movs instructions).

By augmenting the same approach outlined in §5.1, we show
how a malicious hypervisor can gain arbitrary user access in the
SEV-enabled enclave. The attack we explore is a variation of an
Iago attack [8], which is the term for an attack where the response
from untrusted kernel undermines the security of the user space
process. Rather than modifying the kernel, however, in our case the
malicious hypervisor performs a man in the middle attack between
the user space and kernel.

We exploit the fact that the target of the attack (i.e., the OpenSSH
server) performs a series of sanity checks during the public-key au-
thentication process. Specifically, first it checks whether the auth
orized_keys file exists, and if so, verifies the permissions of the
directory structure holding the file. If the checks are satisfied, the
contents of the file are read and the authentication process attempts
to verify the key. This sequence allows one to build a unique appli-
cation profile. In our instantiation of the attack, when the trigger
(i.e., a sequence of system calls that indicate the reading of the user
authorized_keys) is detected, the malicious hypervisor executes
the man in the middle attack.

Next, we need only hyper-step the copy_user_generic() rou-
tine in the kernel. First, the contents of the kernel buffer are copied
to the userspace buffer. Next, when the copy is complete (i.e., when
the counter value in register ECX reaches 0), we artificially increase
the amount of data to be copied. We then feed the faux key to
the user space buffer by modifying the data in the source register.
Finally, the return value of the system call (stored in a register) is
adjusted to reflect the new length of the data.

5.2.1 Under the hood. Similar to the TLS proof of concept, the
change in RIP, the register changes, and the type of memory ac-
cesses are all used to unmask the sequence of instructions. In Fig-
ure 4, the order of the registers used in the store section (red arrow)
is guessed based on the order of the instructions in the load section
(green arrow). That is, we assume the information is written in
the same order as it was read. In the case of the inferred jnz we
know from the change of the instruction pointer that the instruc-
tion is a jump, because of the negative change of RIP. Additionally,
the previously decoded instructions indicate a decrement of the
counter register RCX, and so we surmise that the jump is of the form
“jump if zero flag is not set" (i.e., jnz). The other instructions and
operands are exactly unmasked from the observed change in RIP,
the identification of the memory access type, and the determination
of what register was accessed.

However, unlike in the previous case, the initial cost of finding
the fine-grained trigger is significantly less. Based on the semantics

7 https://elixir.bootlin.com/linux/v4.15/source/arch/x86/include/asm/uaccess_64.h#L36
8See https://elixir.bootlin.com/linux/v4.15/source/arch/x86/kernel/cpu/amd.c#L623
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Instructions
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 Delta

Register 
change

Memory 
Access

start:
movq r8,   [rsi] 3 r8 read

movq r9,   [rsi+8] 4 r9 read
movq r10, [rsi+16] 4 r10 read

movq r11, [rsi+24] 4 r11 read
movq [rdi],       r8 3 write

movq [rdi+8] ,  r9 4 write

movq [rdi+16], r10 4 write
movq [rdi+24], r11 4 write

movq r8,   [rsi+32] 4 r8 read
movq r9,   [rsi+40] 4 r9 read

movq r10, [rsi+48] 4 r10 read

movq r11, [rsi+56] 4 r11 read
movq [rdi+32], r8 3 write

movq [rdi+40], r9 4 write
movq [rdi+48], r10 4 write

movq [rdi+56], r11 4 write

leaq rsi, [rsi+64] 4 rsi+=64
leaq rdi, [rdi+64] 4 rdi+=64

decl ecx 2 ecx-=1
jnz start -72
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Figure 4: Abstraction of going from observed register changes to
unmasked instructions. The underlined instructions are inferred
based on contextual information within the scope of the analysis.

of the observed system call, the target code section, and the informa-
tion available when the trigger is detected, we can limit the amount
of hyper-steps required to reach the critical instructions. Specifi-
cally, when the trigger (i.e., read system call) is detected, arguments
of that system call including the pointer to the destination buffer are
visible to the introspection mechanism. We set a hardware break-
point on the destination buffer pointed to by the second argument
of the SYS_read system call. This allows us to avoid hyper-stepping
through the kernel virtual file system function stack and instead
start the introspection inside the copy_user_generic() function.

To be sure that we can now safely extend the loop without un-
wanted side effects in the guest, we assure that in the observed trace
there is a change of register statematching the tuple [RIP+4,RSI+64;
RIP+4,RDI+64; RIP+2,RCX -1] and RCX has reached zero. Once
satisfied, we inject our faux key.

5.2.2 Results. For the attack, we inject a 2048-bit RSA public key
belonging to the adversary. The key length (512 bytes) mandates
that we complete 8 iterations of the loop (in Figure 4) to inject the
key into the SEV-protected guest. Pulling off the attack requires
a mere 160 hyper-steps, which is imperceptible during the SSH
session establishment process.Henceforth, the adversary is free
to execute any code within the VM and poke around at will.

5.3 Attack on SEV-ES: Application
Fingerprinting

To show that we can successfully identify applications running in
a SEV-ES protected enclave, we performed an empirical evaluation
using Cloudsuite [39]. Cloudsuite offers a series of benchmarks for
cloud services, and uses real world software stacks under realistic
workloads. The web serving benchmark consists of a web server
(Nginx) with the accompanying infrastructure (i.e., PHP, MySQL,
Memcached) serving an open source social network engine called
Elgg. In our setup, the benchmark is hosted in a virtual machine
running Ubuntu.

Our reference datastore, R, consists of binary fingerprints gen-
erated from the disassembly of all the system binaries of Ubuntu
(i.e., /bin/ /sbin /usr/sbin /usr/bin /systemd). R consists of 1465
entries. At runtime, we generate partial fingerprints for unknown
applications using a custom tool based on the AMD IBS Research
Toolkit [3]. The modifications were done to reduce the number of
samples collected from the host OS and to restrict data collection
to the CPU core running the guest VM. We are able to sample once
every eight hundred instructions due to the skid in IBS.

To get a sense of the diversity of the layouts in R, for all pairs
i, j, we examine the matching subsequences in ®ri and ®r j . We say
that two applications have identical layouts if they have the same
number of functions | ®ri | = | ®r j |, and the lengths of the respective
functions are equal. Our analyses show that the length of matching
subsequences is indeed a strong indicator of binary similarity; for
example, the longest matching sequence for distinct applications
in R had only six elements. Obviously, the load on the server and
the duration of the observation period have direct impact on the
quality of the fingerprints we collect at runtime. Intuitively, an
idle application will generate a limited amount of performance
data. Additionally, given the sampling frequency limitations of IBS
(see §4.3), there is no way to guarantee that the observed IBS data
will contain return instructions. Thus, the longer ®u is, the more
confidence we can have in knowing whether it matches one of the
target applications in R.

5.3.1 Results. To that end, the load of the VM was varied by is-
suing varying number of login requests to the Elgg community
site running in the targeted VM. Our results show that in cases in
which we collected fingerprints comprising more than three dis-
tances, we can successfully identify all the applications belonging
to the Cloudsuite web serving benchmark (i.e., Nginx, PHP, MySQL
and memcached) as well as other system applications (e.g., systemd,
snapd). Table 3 presents the relationship between the average num-
ber of return instruction given varying number of web requests,
as well as the true and false positive rates. At | ®u | > 3, we attain
a TP rate of 1 and FP rate of 0.000006. If we allow the adversary
to collect more data, the FP drops to 0.0 once | ®u | > 6. Even at that
threshold, the overhead is negligible. To measure overhead, we
averaged the processing time of 100 login requests. We observed an
average overhead of 30 µs, which is imperceptible to an end-user.

More interestingly, we find that this binary fingerprinting tech-
nique can even distinguish between applications and compiler ver-
sions. To demonstrate that, we extended R to include the disassem-
bly of 10 different versions of Nginx compiled using two versions
of GCC. For example, two recent versions of Nginx (v1.15.8 and
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Table 3: Application Identification Success Rate

# of HTTP
requests

Avg. #of
return instr. TP rate FP rate

( | ®u | > 3)
5 3.78 1 7.1 ∗ 10−6
10 6.91 1 1.42 ∗ 10−5
25 14.06 1 0
50 23.48 1 0

v1.14.2) compiled using the same compiler (GCC version 7.3) shared
a sequence of 108 distances. On the other hand, the same version
of Nginx compiled using two different versions of GCC (v7.3 vs
v5.4) had no shared sequences. Our evaluation shows that given
fingerprints longer than four distances we are able to distinguish
the exact version of an application. As long as we collect one re-
turn instruction that falls outside of the matching sequence of two
versions of the same application, we can distinguish between them.

The ability to precisely identify software running within an en-
crypted VM has far reaching implications. First, an honest cloud
provider can use application fingerprinting to identify potentially
unwanted software and violations of acceptable use policy. On the
other hand, a malicious adversary performing reconnaissance using
the IBS-based inference attack gains valuable insight that can be
leveraged for further attacks, e.g., ROP. Identifying the specific ver-
sion of an application has the advantage that it allows an adversary
to target specific vulnerabilities. Third, the IBS data can be used
to undermine user space Address Space Layout Randomization
(ASLR). Recall that ASLR randomizes module base addresses (i.e.,
the address at which the application is loaded in memory). Since
®u is built using the virtual addresses of return instructions, once
®u is matched to some ®r , the adversary can use that knowledge to
compute the base address of r — thereby defeating ASLR.

6 DISCUSSION AND POTENTIAL
MITIGATIONS

Although AMD is the first vendor to provide a commodity solution
for transparently encrypting guest memory, there is a large body
of work that attempts to protect the confidentiality and integrity of
application data even in the event of OS or hypervisor compromise
[5, 9, 11, 15, 18, 25, 47, 48, 50, 51, 55, 56]. Henson and Taylor [23]
provide a systematic assessment of many of these approaches. Per-
tinent to this work are the ideas in Overshadow [9], where isolation
capabilities of the virtualization layer are extended to allow protec-
tion of entities inside of a virtual machine via a technique called
cloaking. A similar idea was also proposed by Xia et al. [56], but
with the touted advantage of having a smaller trusted computing
base for their shim. Our work demonstrates in a definitive way that
the access to general purpose registers and an ability to interrupt
the guest, are sufficient to unveil executing instructions and recover
data that is otherwise stored in an encrypted memory and storage.
None of these works take into account protection against this new
class of inference attacks presented herein.

Unfortunately, while SEV-ES prevents the hypervisor from in-
specting and modifying general purpose registers, virtualization
support for this extension has only just become available.9 Until
the support for SEV-ES matures, we offer an interim solution that
limits the ability of the hypervisor to force automatic exits as a way
9Amodified Linux kernel is available at: https://github.com/AMDESE/linux/commits/sev-
es-4.19-v2. The code enabling SEV-ES was made available on May 17, 2019

to mitigate the register inference attacks. The hypervisor should
never be allowed to intercept any events that are under the control
of the guest. But, this is no easy feat, as there is an extensive list [2,
§15.9-15.12] of intercepts and traps, many of which are supported
for legacy reasons (e.g., access to control register 3 that was used
in shadow page table implementations), debugging functions, or
obscure functionality. Nevertheless, we suggest the use of trap and
interrupt masks that are applied by the processor to the trap and
interrupt vectors saved in the virtual machine control block. During
the transition from the hypervisor to the guest using the VMRUN
instruction, the processor should raise the general protection fault
if the intercept and trap controls in the VMCB do not conform to the
allowed masks. The masks and the change of the VMRUN instruction
could be delivered in the form of a microcode update for the main
CPU, similarly to the way microcode patches were distributed to
mitigate the Spectre and Meltdown vulnerabilities [1].

Per our structural inference attack on SEV-ES, the knee-jerk re-
action might be to disable the IBS subsystem. However, it is possible
to use software workarounds [3] to enable IBS in software. Worse,
it is not possible for the guest to determine whether IBS is enabled
or not, since the hypervisor ultimately controls the Model Specifics
Registers used to program the IBS subsystem. Moving forward, to
prevent the application fingerprinting attack, we suggest that the
performance measurement subsystem differentiate the data col-
lected from the guest and the host and discard the samples from
the guest when secure encrypted virtualization is enabled.

7 CONCLUSION
To address cloud confidentiality, virtualization technologies have re-
cently offered encrypted virtualization features that support trans-
parent encryption of memory as a means of protection against
malicious tenants or even untrusted hypervisors. In this paper, we
examine the extent to which these technologies meet their goals.
In particular, we introduce a new class of inference attacks and
show how these attacks can breach the privacy of tenants relying
on secure encrypted virtualization technologies. As a concrete case
in point, we show how the security of the Secure Encrypted Vir-
tualization (SEV) platform can be undermined. Additionally, we
show that even when additional state is encrypted (e.g., as proposed
under the SEV-ES extension where the state of general purpose reg-
isters is also encrypted), an adversary may still mount application
fingerprinting attacks, rendering those protections less effective
than first thought. We provide suggestions for mitigating the threat
posed by some of these attacks in the short term.
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A ETHICAL CONSIDERATIONS
As is common in the computer security landscape, there is an in-
tricate dance between defensive and offensive research. We have
shared our results with AMD regarding the power of inference
attacks, and have incorporated some of the feedback into the paper.
This new class of attacks is a direct outcome of not having the
ability to inspect main memory.

B INTROSPECTION ALGORITHM
The procedure we use to selectively hyper-step is presented in
Algorithm 3.

Algorithm 3 Introspection using Trigger Points
1: Off-line: identify critical code section, generate profile, set can-

didate trigger ∆
2: loop Introspection
3: Identify target (§4.1) using profile
4: if trigger point ∆ reached then
5: repeat
6: Hyper-step (§4.2) the target
7: Unveil likely instructions (§4.2.1)
8: Locate fine-grained trigger ∆’
9: if ∆’ found then
10: Set ∆ = ∆’
11: end if
12: Exfiltrate data
13: until system call invocation
14: end if
15: end loop

C NGINX PROCESS CONTROL
The procedure involved in spawning processes in Nginx is shown
in Figure 5. The sequence of system calls spanning init, master, and
workers processes (observable in the context of the SEV register
inference attack) uniquely identify the target.

Init
Process

Socket 1 
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Socket 1 

bound to 

address

Socket 1 in 

listening 

state

Socket 1 in 

listening 

state

Worker
Process

create new 
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bind 
address clone exit

Socket 1 in 

listening 

state
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clone

wait for 
child

Socket 1 in 

listening 
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Socket 2:

decrypt, disk read, 

compress, encrypt

accept

close

End

receive 
request

send 
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wait for 
connections

Socket 1 in 
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Figure 5: Process control in Nginx.

D IBS BASED FINGERPRINT
In the example presented in Figure 6, the reference consists of eight
distances for the nine functions in the application binary image.

Function 
1

Return instructions observed by IBS

ret ret ret

Function 
2

Layout of an application obtained via disassembly. Each vertical line 
represents a return instruction.

r1 r7

d1

d2u

r
r8

Function 
9 

r6r5r4r3r2

Figure 6: Application reference and IBS based fingerprints
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