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ABSTRACT

Ethereum, the second-largest cryptocurrency valued at a peak of
$138 billion in 2018, is a decentralized, Turing-complete computing
platform. Although the stability and security of Ethereum—and
blockchain systems in general—have been widely-studied, most
analysis has focused on application level features of these systems
such as cryptographic mining challenges, smart contract semantics,
or block mining operators. Little attention has been paid to the
underlying peer-to-peer (P2P) networks that are responsible for
information propagation and that enable blockchain consensus.
In this work, we develop NodeFinder to measure this previously
opaque network at scale and illuminate the properties of its nodes.
We analyze the Ethereum network from two vantage points: a
three-month long view of nodes on the P2P network, and a single
day snapshot of the Ethereum Mainnet peers. We uncover a noisy
DEVp2p ecosystem in which fewer than half of all nodes contribute
to the Ethereum Mainnet. Through a comparison with other pre-
viously studied P2P networks including BitTorrent, Gnutella, and
Bitcoin, we find that Ethereum differs in both network size and
geographical distribution.
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1 INTRODUCTION

The historic rise of blockchain based cryptocurrencies to over $327
billion in market capitalization [11] has sparked significant research
efforts studying their reliability, performance, and security. The
central tenet of these cryptocurrencies is their decentralization,
which is achieved through blockchain consensus over a peer-to-
peer (P2P) network. Bitcoin, the highest valued cryptocurrency, has
received the most thorough scrutiny, with many studies analyzing
its peer properties and network health [1, 13, 43, 46]. In contrast,
the network layer for Ethereum, the second largest cryptocurrency,
has gone mostly ignored, even though it employs a completely
distinct, more complex P2P protocol.

Ethereum is commonly referred to as a cryptocurrency competi-
tor to Bitcoin, but it is actually much more than a currency. The
Ethereum Foundation explains that its token, ether, is not intended
to be a currencys; it is a byproduct of a much larger vision, a fuel
for operating a “world computer” [19, 27, 28]. Ethereum enables
decentralized execution of the “world computer” by providing a
platform for blockchain-based smart contracts, which are programs
that other Ethereum addresses/actors can audit and participate in.
For instance, a contract can encode a fair lottery that is auditable by
anyone on the network. Execution of a contract is validated by all
up-to-date blockchain participants, to ensure correct execution by
blockchain consensus. Bitcoin also facilitates the concept of a smart
contract, but usage is limited to currency transactions. What dif-
ferentiates Ethereum from Bitcoin is “the built-in Turing-complete
programming language that allows anyone to create contracts for
any usage” [8].

The flexibility offered by Ethereum’s smart contracts has at-
tracted many users, developers, and investors, leading Ethereum
to become the second largest cryptocurrency valued at a peak of
138 billion US dollars [11] in 2018. Ethereum’s momentum has
prompted many studies at its application layer such as smart con-
tract code analysis [5, 39, 59] or attacks on smart contracts [3, 15].
However, to our knowledge, work exploring its underlying P2P
network structure is sparse. Considering its unique capabilities,
purpose, and prevalence, we hypothesize that the properties of
the Ethereum P2P network are different from those of the Bit-
coin network and other previously explored P2P networks, such
as BitTorrent and Gnutella. Quantifying Ethereum’s P2P network
provides insight into its composition and robustness, while also
highlighting areas of potential dysfunction.
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Before undertaking the measurement of Ethereum network peers,
we first performed a case study on the two most popular clients,
Geth and Parity, to gain insight into the behavior of Ethereum
nodes. We then built NodeFinder, an open—source1 and ethical
measurement tool for characterizing the three protocols that con-
stitute Ethereum’s P2P network: RLPx for node discovery, DEVp2p
for application session establishment, and Ethereum subprotocol
for Ethereum-specific operations. We deployed NodeFinder from
April 18-July 8, 2018 and collected two datasets: 1) a comprehensive
view of the Ethereum ecosystem via the nodes seen within the full
82 day collection period and 2) a 24 hour snapshot view of the peers
on the main Ethereum network to understand the network’s instan-
taneous properties, such as size, latency, geographic distribution,
and node freshness. After performing consistency checks as well
as external validation, we ultimately discovered 228% more nodes
than prior work.

Our investigation reveals that Ethereum operates on top of a
noisy P2P network, which consists of a multitude of different pro-
tocols, subprotocol networks, and blockchains. In fact, we find that
fewer than half of DEVp2p nodes contribute to the main Ethereum
blockchain. Even amongst productive Ethereum nodes, we dis-
cover a jumble of both official and unofficial clients running a wide
range of stable and unstable versions. Perhaps most surprisingly,
we observe that the two most popular clients have a fundamental
difference in their RLPx implementations that has the potential to
cause friction between significant portions of the overall network.
Finally, in our comparison to other popular P2P networks such
as Gnutella, BitTorrent, and Bitcoin, we find that Ethereum has
differences in both network size and distribution, which presents
unique challenges for future growth and improvement.

In summary, the contributions of this paper are as follows:

e The development of NodeFinder, a new open-source tool
for scanning and monitoring Ethereum’s P2P network that
discovers over 10K more nodes than existing efforts.

e A comprehensive exploration of Ethereum’s diverse P2P
ecosystem that exhibits many hallmarks of a noisy, inefficient
network.

o A snapshot examination of Ethereum’s main network and a
comparison with other well-known P2P networks, such as
Gnutella, BitTorrent, and Bitcoin.

2 BACKGROUND

Ethereum is a blockchain platform for distributed computing and
was the first major blockchain to support Turing-complete scripting
via smart contracts, which are expressed as opcodes specific to the
Ethereum Virtual Machine (EVM) [55]. Ethereum also operates as
a cryptocurrency by supporting the transfer of tokens called ether
between Ethereum accounts. In addition to its use as a fiat currency,
ether is also used to incentivize Ethereum nodes to perform dis-
tributed computation. Ether can also be converted to gas, which is
used as a fee for executing transactions and smart contracts, and
effectively mitigates spam.

Similar to other cryptocurrencies, Ethereum’s blockchain is man-
aged by a peer-to-peer (P2P) network. Ethereum’s network com-
munication is comprised of three different protocols, which run on

!https://www.github.com/teamnsrg/ethereum-p2p
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Figure 1: Ethereum Network Protocols—We provide an
overview of RLPx, DEVp2p, and Ethereum subprotocol and
display a typical workflow for a new node joining the
Ethereum network. These protocols run on top of UDP
(dotted-line) and TCP (solid line), through a series of request
(solid arrow) and response (hollow arrow) messages.

top of UDP and TCP: RLPx for node discovery and secure transport,
DEVp2p for application session establishment, and the Ethereum
application-level protocol (henceforth referred to as Ethereum sub-
protocol). We provide a high level overview in Figure 1 and expand
on the pertinent details for each protocol below, drawing upon
official specifications [9, 35, 38].

2.1 RLPx

RLPx implements node discovery based on the routing algorithm of
Kademlia, a widely used distributed hash table (DHT) [41], to build
an efficient network with a topology of low diameter [36, 38, 56].
We first discuss how Kademlia operates and then highlight the
unique features of RLPx.

Kademlia is a UDP-based protocol for distributed nodes to store
and retrieve data. Node IDs (randomly generated) and keys for
stored data (generated by hashing the data) are both represented as
160-bit values, which allows for direct comparison between node
IDs and data keys. More specifically, Kademlia uses bitwise XOR to
compute a distance d(a, b) = a ® b between two 160-bit values and
then, using the integer value of this bitwise XOR distance, stores data
at nodes with node IDs that are close to the data’s key. Kademlia’s
operation hinges upon this local, deterministic mapping between
data and network nodes to locate nodes quickly.

Each Kademlia node maintains a routing table for monitoring
peer-connected nodes and determining which neighbors store the
data for a given key. The routing table is split into 160 buckets
based on the XOR distance between a node’s own node ID and
the neighboring node ID. Each bucket is a list of nodes that are
between 2! to 2/7! in XOR distance. Each bucket list is limited
to a maximum of k nodes and is thus called a k-bucket. When
a new neighboring node is detected, Kademlia adds the node to
the appropriate k-bucket. However, if the target k-bucket is full,
Kademlia’s eviction policy favors old nodes and only adds a new
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node if the least recently active pre-existing node is not lively, i.e.,
it does not respond to a PING message with a PONG message.

In order for a newly instantiated Kademlia node to find peers,
it first adds a hard-coded set of bootstrap node IDs to its routing
table. Subsequently, when attempting to locate a target node on
the network, the node searches its routing table for the a (typi-
cally three) peers that are closest to the target node. The node then
sends these o nodes a FIND_NODE message that specifies the target
node ID, and each peer responds with the list of k nodes from its
own routing table that are closest to the target. The querying node
adds any new node information (i.e., node ID, IP Address, UDP/TCP
ports) it discovers through this process to its routing table, and then
iteratively repeats the process until it converges on the target node.

There are five primary differences between RLPx and Kademlia.
First, RLPx does not support data storage/retrieval—it only supports
node discovery and routing. Second, RLPx uses 512-bit node IDs
instead of 160-bit node IDs. Third, node IDs also function as public
keys and are used in RLPx to ultimately establish an authenticated
TCP connection that provides security features including signed
packets and encryption after a Elliptic Curve Integrated Encryption
Scheme (ECIES) key exchange. Fourth, RLPx does not calculate
XOR distance directly on node IDs; instead, it performs distance
calculation on the Keccak-256 hash [6] of the node ID. Finally, RLPx
uses the floor of logz (a®b) as its distance metric, which corresponds
to 257 distinct node buckets.

2.2 DEVp2p

After peer nodes have been discovered through RLPx and a secure
TCP connection is established, DEVp2p negotiates an application
session between two connected peers. Each node must first send its
peer a HELLO message, which details its own node ID, DEVp2p ver-
sion, client name, supported application protocols/versions, and the
port number (30303 by default) that the node is listening on?. Based
on HELLO message information, the nodes may begin to transmit
application data packets over DEVp2p. During periods of inactivity,
DEVp2p nodes will periodically send DEVp2p PING messages (not
to be confused with RLPx PING) at an interval set by the client to
ensure their connected peers are still active and have not crashed. If
a corresponding DEVp2p PONG message is not received within the
maximum allowed idle time set by client, then the node will send a
DISCONNECT message, which may include an error code explaining
the disconnect.

2.3 Ethereum Subprotocol

The Ethereum subprotocol runs on top of DEVp2p and is de-
noted as ‘eth® during DEVp2p HELLO exchange. At a high level,
the Ethereum subprotocol is used to retrieve and store informa-
tion on the Ethereum blockchain. Note that this does not include
the details of smart contract execution and Ethereum blockchain
mining—rather, we focus on the messages used to communicate
blockchain state information over the network. The description
below applies to version 62/63 of the Ethereum subprotocol, which

%In practice, the “listenPort” field is unused/ignored by most clients since the RLPx
TCP connection already exists on a port, and port information is de facto obtained at
the RLPx layer
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was added in October 2015 [30] and is the most recent version as
of 2018.

The first message that must be sent by both peer nodes after
the DEVp2p HELLO handshake is a STATUS message, which conveys
the current state of a node’s blockchain. It contains a node’s pro-
tocol version, network ID (multiple distinct Ethereum networks
exist), and the Keccak-256 hash of the first block in the blockchain,
a.k.a. the genesis hash, since there may also be multiple distinct
blockchains for a single network ID. The mainstream Ethereum
blockchain exists on network ID 1 (i.e., Mainnet) with genesis hash
d4e56740. . .b1ch8fa3, and it supports the DAO fork>. STATUS in-
formation is used by nodes to determine which peers they should
connect to. Similar to DEVp2p, if a node encounters an Ethereum
peer that is on a different Ethereum network or genesis hash, it will
disconnect from that peer.

Peers that remain connected after STATUS message exchange
utilize two STATUS message fields to coordinate blockchain syn-
chronization: the hash of the most recent block known to a node
(i.e., best hash) and the total difficulty of its blockchain. For il-
lustrative purposes, consider a new node joining the Ethereum
network. It begins downloading a local copy of the full blockchain
by first sending GET_BLOCK_HEADERS messages to obtain a list of
block headers, which include block meta information such as parent
block hash, miner address, and a free-form field for extra informa-
tion, which is used to detect the DAO fork and distinguish between
mainstream Ethereum and Ethereum classic, amongst other uses.
After it has compiled a list of missing block hashes, the node then
sends GET_BLOCK_BODIES messages to retrieve full block contents
and verify the validity of the blockchain.

There are two forms of Ethereum blockchain validation: 1) block
header validation and 2) blockchain state validation. Block header
validation, as defined in Section 4.3.4 of the Ethereum Yellow Pa-
per [55], checks a block’s parent block hash, block number, times-
tamp, difficulty, gas limit, and valid proof-of-work hash. Blockchain
state validation consists of sequentially executing all transactions,
recording every account’s state in a global database, and insert-
ing each state snapshot as a node in the global Merkle Patricia
state tree. Blockchain state validation requires significantly more
computation and time than block header validation.

In order to reduce the time for new nodes to synchronize and
validate the entire blockchain, Ethereum version 63 introduced fast
sync, an optional operational mode which reduces the blockchain
state validation workload and improves syncing times by approx-
imately an order of magnitude [54]. After downloading all block
headers and bodies, a fast sync node picks a pivot point block that
is close to the most recent head of the blockchain. From the genesis
block to the pivot point, the node performs fast block header valida-
tion via GET_RECEIPTS messages, which retrieve meta information
including gas consumption, transaction logs, and status code. At
the pivot point, a fast sync node utilizes GET_NODE_DATA messages
to download a global state database at that block. From the pivot
point onward, the node performs full blockchain validation.

3The DAO fork is a hard fork that occurred on July 20th, 2016 returning approximately
$40 million worth of Ether stolen from the DAO contract in June 2016 to a refund
smart contract [14]. As a result of the fork, the mainstream Ethereum blockchain split
into two, and the non-supporting blockchain became Ethereum Classic.
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Figure 2: Geth Message I/O—The counts of messages sent/re-
ceived by Geth reveal that an overwhelming 77.4% and 53.5%
of sent/received messages were TRANSACTIONS messages.

Once a node has been synced to the blockchain, it can actively
participate in the network by announcing and listening to two
possible blockchain events: new transactions and new blocks. In
order to add new transaction(s) to the blockchain, an Ethereum node
(hereafter referred to as the “transaction origin node”) can broadcast
a TRANSACTIONS message to all of its active Ethereum peers. For
non-origin nodes, upon receipt of a TRANSACTIONS message, all
transactions in the message are validated locally to ensure that they
are signed properly, do not exceed size/gas limits, do not transact
a negative value, and have senders with sufficient Ether/gas. The
recipient node then broadcasts valid transactions to all peers except
those that are likely to already know about the transaction, i.e., the
peers that sent the transaction and the peers that have previously
been sent the transaction. New block propagation occurs similarly
through NEW_BLOCK_HASHES and NEW_BLOCK messages.

3 CASE STUDY

While the documentation for Ethereum’s full network stack (RLPx,
DEVp2p, Ethereum subprotocol) defines message formats and func-
tionality, it provides sparse guidance on message sending behav-
ior, which can be implemented in a variety of ways. For instance,
when a new node downloads an initial copy of the blockchain
using GET_BLOCK_HEADERS and GET_BLOCK_BODIES, the order and
concurrency of downloads is open to implementation interpreta-
tion, and this choice can have drastically different impacts on the
network. Thus, to inform the design of NodeFinder, an Ethereum
network measurement tool, we deployed and profiled the operation
of the two most popular Ethereum clients [22], Go Ethereum a.k.a.
Geth (Ethereum’s official Golang implementation) [29], and Parity,
an unofficial Rust implementation [47].

From January 24 - January 31, 2018, we instrumented and ran
Geth version 1.7.3 and Parity version 1.7.9 with default settings
on two separate Ubuntu 16.04 machines, each with 128GB RAM,
32 cores, and a 10 Gb/s network link. We recorded all messages
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Figure 3: Parity Message I/O—The counts of messages sen-
t/received by Parity reveal that Parity sends significantly
fewer TRANSACTIONS messages than Geth, only 4.6% of sent
messages. Parity also experiences irregular RLPx PING/PONG
spikes.
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Figure 4: Peer Counts—Geth and Parity converge to their de-
fault 25 and 50 peers, respectively, and remain relatively sta-
ble over the course of a week.

sent and received (Figures 2 and 3), along with any changes in the
number of connected peers (Figure 4).
From our case study, we made the following observations:

(1) Geth and Parity reached their default peer limits in a matter
of minutes, with Geth converging to a maximum of 25 peers,
and Parity converging to 50 peers (Figure 4). A network-
encompassing scanner must ignore the hardcoded peer limits
to continuously discover new nodes and monitor existing ones.
Additionally, even though Geth and Parity nodes were relatively
stable—they were at maximum peer occupancy 99.1% and 91.5%
of the time, respectively—they still fluctuated enough to provide
brief windows of opportunity for a network scanner to connect
to them over time.

(2) Once a node has synchronized with the blockchain,
TRANSACTIONS messages dominate network I/O. Geth
and Parity received similar proportions of TRANSACTIONS
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Received

Sent

Disconnect Msg Geth

Parit;

y Geth Parity

Too many peers 3,938 (72.55%)

113,014 (95.19%,
2,741 (2.31%

2,681 (2.26%

Subprotocol error 433 (7.98%) 174 (
Disconnect requested 967 (17.82%)
Useless peer 41 (0.76%) 108 (
Already connected 31 (0.57%)
Read timeout 15 (0.28%) 10 (
Client quitting 3(0.06%) 1(

2,073,995 (99.59%)
3,856 (0.19%)
2,730 (0.13%)
1,859 (0.09%)

124 (0.01%)
24 (0.00%)
3 (0.00%)

1,493,488 (88.58%)
0.15% —
9,322 (0.55%)
168,341 (9.98%)
124 (0.01%)

14,780 (0.88%)

0.01%

)
)
)
0.09%)
)
)
0.00%)

Total 5,428 (100%)

118,729 (100%)

2,082,591 (100%) 1,686,055 (100%)

Table 1: Disconnect Reasons—The majority of DISCONNECTs, both sent and received, are due to peers that have reached their
maximum peer limit. Significantly more DISCONNECTs sent than received suggests alarge number of incoming peer connections.

=

=

messages, but Geth sent significantly more to the network.
Examining the source code reveals that while Geth broadcast
transactions to all of its peers, Parity only sent transactions
to vn peers. Transaction broadcast can quickly become a
crippling bottleneck for an Ethereum network monitor that
connects to every peer it finds, due to the large numbers of
duplicate messages that every peer would send the monitor.
To better design a network wide Ethereum scanner that uncov-
ers as many nodes as possible, we examined the DISCONNECT
messages (Table 1). Intuitively, an effective scanner would avoid
all disconnect scenarios. The most popular disconnect reason for
both Geth and Parity was Too many peers, which occurs when
connecting to a node that has already reached its maximum
peer limit. Our scanner should accept all incoming connections
and never send out Too many peers disconnects. Our scanner
will also attempt to overcome the Too many peers messages it
receives by slowly and deliberately re-attempting to connect to
nodes at max peer capacity. The next most commonly observed
disconnect reasons were Subprotocol error, Disconnect requested,
and Useless peer. These indicate either a non-Ethereum protocol
on the DEVp2p network, an incompatible Ethereum blockchain
(e.g., Ethereum Classic), or a faulty protocol implementation.
Because we ultimately aim to measure the functional Ethereum
network (i.e., the main network with correct genesis hash and
DAO fork), we do not try to reduce these disconnections.
Interestingly, even though the case study Geth instance had
fewer concurrent peers than Parity, it received and sent sig-
nificantly more DISCONNECT messages due to Subprotocol error.
Parity sending zero Subprotocol error messages is not surprising
as the client considers any error code beyond 0x0b as "Un-
known" and does not implement sending a disconnect message
to peers causing the error. This however does not explain why
Parity receives relatively smaller number of such errors from
its peers compared to Geth. Our hypothesis is that the Parity
case study node might have peered primarily with other Par-
ity nodes, which do not send Subprotocol error messages. One
possible mechanism is through our discovery of Parity’s incor-
rect implementation of the XOR distance metric as discussed in
Section 6.3.

4 DEVP2P NODEFINDER

Although RLPx and DEVp2p were developed specifically for
Ethereum, DEVp2p in particular was designed to support any
number of higher level application subprotocols. In order to in-
spect the full DEVp2p ecosystem underlying Ethereum, we built
NodeFinder, an open source Ethereum monitoring tool that iden-
tifies active DEVp2p nodes and periodically retrieves their client
information (DEVp2p HELLO) as well as their Ethereum blockchain
status (Ethereum STATUS). We designed the scanner following the
observations made in Section 3. NodeFinder is based on Geth ver-
sion 1.7.3, which remains compatible with all current versions of
RLPx, DEVp2p, and Ethereum subprotocol. Below, we describe sev-
eral modifications made to the base Geth implementation to attain
broad coverage of all DEVp2p nodes.

First, NodeFinder ignores the maximum peer limit. A normal
Geth client relies on node discovery and incoming connections to
populate its peer table. The discovery process is initiated whenever
the client has room for more peers and has tried connecting to all
nodes from its most recent round of discovery. The client accepts
incoming connections until the maximum peer limit is reached. If
the limit is exceeded, either through discovery or incoming con-
nections, the client terminates any pending peer connections by
sending out Too many peers disconnects. NodeFinder ignores the
maximum peer limit at both the DEVp2p and Ethereum layers in
order to continuously perform discovery and minimize peer dis-
connects.

Second, NodeFinder disconnects from peers once it has checked
for the DAO fork block via GET_BLOCK_HEADERS, which follows im-
mediately after a successful Ethereum handshake. A normal Geth
client maintains its peer connections as long as possible—until
the connection fails or either side of the connection requests to
disconnect—because it is effectively a file-sharing client designed
to continuously download the blockchain, which never stops grow-
ing. Considering the tremendous amount of traffic generated by
Ethereum connections (as shown in the case study), maintaining all
peer connections indefinitely and handling every message, while
ignoring the maximum peer limit, is impractical. NodeFinder dis-
connects from peers and frees up their peer slots as soon as it is
done collecting information from peer connection establishment,
which consists of DEVp2p handshake, Ethereum handshake, and
DAO fork block verification (i.e., requesting the DAO fork block



IMC ’18, October 31-November 2, 2018, Boston, MA, USA

header). NodeFinder then periodically reconnects to known nodes
to track longitudinal properties such as liveliness and churn. In-
volving only 3 message exchanges at most, NodeFinder occupies
peer slots for less than a second in most cases, and no more than 2
minutes in the worst case where both endpoints take the maximum
allowed times to read (30s) and write (20s) messages.

To periodically re-connect to previously seen peers, we modified
Geth’s outgoing discovery mechanism so that when NodeFinder
successfully completes “dynamic-dials,’—dials to new nodes learned
from node discovery—the dialed addresses are automatically added
to a StaticNodes list and re-dialed as “static-dials” every 30 min-
utes. As the StaticNodes list is expected to grow large over time,
NodeFinder schedules static-dials, dynamic-dials, and node discov-
ery in separate queues to prevent the static-dials from delaying
other tasks. Up to 16 concurrent dynamic-dials (the default limit
determined by Geth’s maxActiveDialTasks constant) and a sin-
gle node discovery are handled concurrently. Every static-dial is
handled immediately with no concurrency limit. We store all the
addresses and their last-dialed timestamps to a local database to
allow NodeFinder to re-generate the most recent StaticNodes list
in case it restarts due to errors. We removed the addresses resolu-
tion step because resolving every failed address in the list generates
excessive RLPx node discovery traffic and may negatively affect
the network. Instead, we remove stale addresses with a last suc-
cessful TCP connection time of more than 24 hours from the list.
Bootstrap nodes—which normal clients use as fallback nodes when
it has no connected peers—are added to the StaticNodes list and
periodically re-dialed like any other nodes.

Lastly, for both debugging and data collection purposes, we
co-opted Geth’s built-in logging mechanism to record informa-
tion. When peers send HELLO, DISCONNECT, and STATUS messages,
NodeFinder logs decoded content of each message in separate lines.
If DAO fork block verification occurs, whether the peer supports
or opposes the fork is also logged separately. Every log message
resulting from a peer connection is prepended with following in-
formation: timestamp (in Unix time with microsecond-precision),
peer’s node ID, IP address, port, connection type (dynamic-dial,
static-dial, or incoming), connection latency, and duration of the
connection. To estimate the peer’s latency, NodeFinder obtains
the smoothed round-trip time of the connection directly from its
underlying TCP socket every time it sends or receives a message.

Geth’s DEVp2p server has several hardcoded constants that de-
termine its discovery and connection rates. Brief descriptions and
default values of the constants are listed below:

e lookupInterval (4s) - minimum time interval between
node discoveries (based on start time)
defaultDialTimeout (15s) - TCP dial timeout
frameReadTimeout (30s) - TCP read timeout
frameWriteTimeout (20s) - TCP write timeout
maxActiveDialTasks (16) - maximum number of concur-
rently dialing connections

e maxAcceptConns (50) - maximum number of concurrently

accepting connections

Although changing these constants would most likely improve
node discovery connection rates and result in more efficient han-
dling of idle connections, we choose to leave them as their default
values to minimize our measurement impact on the network.
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5 MEASUREMENTS

From April 18-July 8, 2018, we instrumented and ran 30 instances
of NodeFinder on an Ubuntu 16.04 machine with 128GB RAM,
32 cores, and a 10 Gb/s network link. To handle a large number of
concurrent peer connections, we increased the system limits on
number of open files to 1,048,576 and configured network buffer
size and ephemeral port range of TCP as listed below:

net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
net.ipv4.ip_local_port_range = 1024 65000

We note that the measurement nodes’ performance gradually
degraded from around the 3rd week of May to May 28th due to
substantial delays in query results from their central database that
kept track of status of scanned targets. We resolved the issue by
removing unnecessary database indexes and simplifying query
statements. Sharp drops on the 28th present in time series graphs
in this paper are due to 13-hour downtime that resulted from the
structural change of the database. We resumed the measurement
at 1pm (CST) of the same day. After the change, the measurement
nodes remained stable until the end, from May 29th to July 8th.

5.1 Measurement Ethics

In accordance with the ethics guidelines presented by the Menlo
Report [4], we made conscious efforts to reduce or eliminate the
harm done by our measurements on the Ethereum network. We
also followed many of the best practices outlined by ZMap [18] and
ensured that all scanning nodes had DNS names that signal benign
scanning, as well as a website on port 80 explaining the purpose
of our scanning. We received no requests to be excluded from
our Ethereum measurements. Further, we only sent well-formed,
standard compliant messages and conformed to normal Ethereum
peer behaviour, when possible. Lastly, we attempted to minimize the
number of NodeFinder nodes on the network to avoid unintentional
sybil attacks.

5.2 Internal Validation
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Figure 5: Discovery and Dynamic-dial Attempts—
NodeFinder instances made 219,180 discovery and 5,328,144
dynamic-dial attempts per day on average during the stable
period. The ratio between the two remains visibly constant.
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To validate the consistency of our measurement approach and
results, we observe the 30 NodeFinder instances’ node discovery
and connection rates. We first confirm that they continuously per-
formed node discovery throughout the measurement, with each
node making about 304 attempts per hour on average during the
stable period (Figure 5). Given that the normal Geth client from our
case study made 180 attempts per hour, we find the NodeFinder’s
discovery attempt rate acceptable as it is clearly faster than a normal
client’s while not exceeding the 4-second interval limit enforced
by lookupInterval. We also observe that the nodes’ dynamic-dial
attempt rate remained proportional to the discovery attempt rate at
a constant factor, as expected, since dynamic-dials always originate
from node discovery results.
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Figure 6: Number of Nodes Dynamic-dialed—NodeFinder in-
stances attempted dynamic-dials to 34,730 unique nodes per
day on average during the stable period.
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Figure 7: Number of Nodes Responded to Dynamic-dials—
10,919 unique nodes responded to dynamic-dials per day on
average during the stable period. The daily number of re-
sponding nodes observed by the NodeFinder instances as a
whole remains relatively consistent, regardless of each in-
stance’s stability.

Next, in Figure 6 and Figure 7, we find the NodeFinder instances
attempted dynamic-dials to 34K unique nodes and received either
HELLO or DISCONNECT messages back from nearly 11K nodes per day
on average during the stable period, showing about 31.4% chance
of finding an active DEVp2p node. The figures also show that the
number of unique nodes observed by all 30 instances as a whole
remained relatively consistent, even throughout the unstable period
in which each instance’s rates clearly declined. While this indicates
that running 30 instances of the tool was sufficient to overcome
each instance’s performance decline, the overall network coverage
remains unknown. Discovering a total of 455,641 nodes over the 82-
day period at a consistent rate of over 5K per day, the 30 instances
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showed no clear sign of approaching full network coverage. We
hypothesize that the unexpectedly high growth rate is caused by
nodes that constantly generate new node IDs. We further discuss
the growth rate in Section 5.4.
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Figure 8: Connections from/to Bootstrap Node—Both
NodeFinder instance and the bootstrap node frequently
find each other through node discovery. The bootstrap node
is periodically re-dialed.

Lastly, we look at the number of connections made between
a NodeFinder instance and a known bootstrap node*to verify if
NodeFinder static-dials discovered nodes as designed. Figure 8
shows that the NodeFinder instance connected to the bootstrap
node through about 6 dynamic-dials and 44 static-dials per day on
average during the stable period. The number of static-dials to a
single node is expected to be no greater than 48 per day because
NodeFinder’s static-dial interval is set to 30 minutes. The observed
number is slightly lower than the maximum because NodeFinder re-
schedules next static-dial upon completion of any type of outbound
connection attempt, i.e., an unscheduled regular dial pushes back
next re-dial time. The noticeable spikes in number of dynamic-dials
during the unstable period are in response to a lack of static-dials
resulted from the instances’ performance issue.

To confirm that NodeFinder was able to find newly-joined nodes
within a reasonable time frame, we observe how long the 30
NodeFinder instances—which all started and joined the DEVp2p net-
work at the same time—took to find and make a successful DEVp2p
connection (i.e., exchanged either HELLO or DISCONNECT messages)
with each other. Each instance discovered the other 29 nodes in less
than 9 hours, the fastest completion time being a little over 3 hours.
This provides us confidence that the NodeFinder should be able to
find any node (participating in node discovery) on the network.

5.3 External Validation

To validate the coverage of NodeFinder with an external data source,
we compare our results with ethernodes.org, an independent web-
site that reports the estimated size of Ethereum networks and de-
tails of their nodes based on information collected with one or
more crawling nodes through both outgoing and incoming connec-
tions [22, 50]. The list of nodes and their details are collected from
the website’s Mainnet nodes page, which lists all nodes that have
been seen using network ID 1 within 24 hours. As Ethereum net-
works are identified based on both network ID and genesis hash, we
look at each node’s reported genesis hash and consider only those
with the Mainnet blockchain’s genesis hash (d4e567. . . cb8fa3) for
our comparison. We then compare the filtered set of nodes against

4enode://78de820916848093. ..@191.235.84.50: 30303
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our own dataset of scanned nodes that are part of the Mainnet. Both
datasets, collected at midnight of April 24th in Central Standard
Time, are based on scans run over a 24-hour period beginning on
April 23rd.

Source EN NF NFR NFU
EN 4,717 3,856 2,620 1,236
NF — 16,831 5,951 10,880

Table 2: Number of Nodes in Intersections of NodeFinder
and Ethernodes Sets—EN: Ethernodes, NF: NodeFinder, NFR:
NodeFinder Reachable Nodes, NFU: NodeFinder Unreach-
able Nodes

We find that only 4,717 out of 20,437 nodes listed on Ethernodes’
Mainnet nodes page at the midnight actually operated on the Main-
net blockchain. Our comparison, summarized in Table 2, shows that
the 30 NodeFinder instances were able to pick up 12,114 more Main-
net nodes. NodeFinder and Ethernodes overlap at 3,856 common
nodes, or 81.8% of all nodes found by Ethernodes. To determine
if we have ever learned about the missing 891 nodes, we looked
at larger datasets: 1) a list of all Ethereum nodes seen during the
same period, and 2) a similar list including all DEVp2p nodes. With
8 and 359 matches from the first and second list respectively, we
speculate that our scans successfully detected 359 of the missing
nodes during the 24-hour period but were unable to verify their net-
work due to failing to receive their STATUS messages. A closer look
at the missing nodes’ supported protocols shows that 61 of them
were running light nodes—which run different protocols, namely
Light Ethereum Subprotocol (LES) and Parity Light Protocol (PIP),
for simply accessing and verifying a small portion of an Ethereum
blockchain [10]. As NodeFinder is not designed to support the light
protocols, it is unable to exchange messages with them to obtain
their network information. Looking at the nodes’ client informa-
tion, we also find that 170 of the missing nodes were running Parity
1.6.8/1.7.0-beta-windows-msvc but the root cause of their absence
from our scans remains unknown. Because they amount only 1.4%
compared to the 12K nodes missing in Ethernodes’ dataset, we
consider this a minor limitation.

To understand how the NodeFinder instances fare against Eth-
ernodes in network coverage, we compare how many publicly
unreachable nodes are observed in each dataset. In our dataset, we
consider a node publicly reachable if there was at least one success-
ful peer connection started by our nodes during the 24-hour period.
As we are unable to obtain such information for the Ethernodes’
dataset, we look at its overlap with our reachable and unreachable
subsets. Table 2 shows that our method found more nodes than
Ethernodes in both categories. Further, the difference of almost one
order of magnitude in the number of publicly unreachable nodes
indicates that the 30 NodeFinder instances have propagated their
node addresses throughout a significantly larger portion of the
Mainnet than Ethernodes’ crawlers have.

5.4 Data Sanitization

To narrow down the source of the unexpected growth rate, we
look at the distribution of nodes by IP addresses and find that
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more than 15% of nodes resided at only 5 IPs. We further look
into the IP with the largest number of nodes, 149.129.129.190,
and find that all 42,237 nodes from the address ran same
client ethereumjs-devp2p/v1.9.0°, and their reported best block
hashes were always same as the Ethereum Mainnet genesis block
hash. 80% of them were seen only once; the longest time a node
remained active on this IP was less than 30 minutes. We categorize
these nodes, as well as 4K nodes from 2 other IPs, as anomalies
that should not be considered for subsequent analysis as part of the
network. Based on our observation of over 20K similarly behaved
nodes, we establish the following steps to identify short-lived nodes
from IP addresses that abusively generate new nodes (node IDs):
(1) Choose nodes (based on node IDs) that have been active for
less than 30 minutes.
2) Group the chosen nodes by their IPs.
3) Exclude IPs that map to less than 3 nodes.
4) Calculate new node generation rate for each IP.
5) Choose IPs that generate new nodes every 30 minutes or
faster on average.
Based on these criteria, we mark 97,930 nodes (21.5% of all nodes)
belonging to 1,256 IPs (0.3% of all IPs) as abusive and removed
them from the dataset so that our results represent a more accurate
estimate of the ecosystem. For the same reason, we also exclude
242 nodes that ran NodeFinder during our data collection period,
including our own 37 measurement nodes.

(
(
(
(

5.5 Limitations

Our analysis results are subject to limitations due to lack of ground
truth data and the dynamic nature of the P2P network. Without
ground truth data, we are unable to validate our findings and pro-
vide an accurate estimate of our coverage of the network. The large
amount of churn in the network and presence of publicly unreach-
able nodes make our network analysis more difficult. Because we
partially rely on incoming connections from nodes, we may never
be able to have peer connections with some unreachable nodes that
connect to a set of selected nodes added to their StaticNodes list.
Our understanding of the network properties are also limited our
analysis does not recover the network topology.

6 PEER ECOSYSTEM

Ethereum operates on an overlay network that consists of RLPx
over UDP/TCP, DEVp2p, and Ethereum subprotocol (Figure 1). We
performed a comprehensive measurement of all three layers of this
ecosystem and found a potpourri of nodes running different proto-
cols and contributing to different blockchains. Even after narrowing
down the peer network to non-Classic Ethereum Mainnet nodes,
we observed a heterogeneous collection of client types and versions.
We also find evidence that the two most popular client types, Geth
and Parity, do not interoperate efficiently due to implementation
differences. We expand on each section below.

Sethereumjs-devp2p is a JavaScript implementation of DEVp2p and Ethereum pro-
tocol. v1.0.0 is the first version publicly released more than a year prior to the first
main release and is known to have issues that cause unstable DEVp2p and Ethereum
connections [21].
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Net.ID: 1
Gen. Hash: d4e567..
176,482 (54.54%)
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Testnet (Ropsten)
Net. ID: 3

Gen. Hash: 419410..
14,958 (4.62%)

Musicoin
Net. ID: 7762959
Gen. Hash: 4eba28..

Figure 9: Alternate Ethereum Blockchains—Ethereum Mainnet with the proper genesis hash accounts for only 54.5% of
Ethereum nodes, which operate a total of 4,076 networks and 18,829 genesis hashes. The major subdivisions represent dif-
ferent networks, and the minor subdivisions represent distinct genesis block hashes within a network.

6.1 Non-productive Peers

In total, from April 18 to July 8, we found 3,023,275 unique node
IDs through RLPx discovery. Of these, we were able to establish
an RLPx encrypted TCP connection with 357,710 nodes and suc-
cessfully exchange DEVp2p HELLO messages with 356,492 nodes.
We characterize these nodes and discover that 48.2% are useless
peers that do not contribute to the Ethereum network because they
either do not run the Ethereum subprotocol, or they do not operate
on the main Ethereum blockchain.

Service (protocol) Count Percentage
Ethereum (eth) 335,036 93.98%
Swarm (bzz) 6,579 1.85%
LES (les) 4,431 1.24%
Expanse (exp) 1,800 0.50%
Istanbul BFT (istanbul) 1,647 0.46%
Whisper (shh) 1,622 0.45%
DubaiCoin (dbix) 1,010 0.28%
PIP (pip) 945 0.27%
MOAC (mc) 583 0.16%
Elementrem (ele) 286 0.08%
Unknown 30 0.01%
30 Others 2,523 0.71%

Table 3: DEVp2p Services—Ethereum subprotocol is the pri-
mary protocol found on DEVp2p at 93.98% of the peer net-
work.

DEVp2p is designed to support any number of application level
subprotocols that are specified as capabilities in the DEVp2p HELLO
message. In practice, we observe that Ethereum is the predomi-
nant service utilizing DEVp2p, accounting for 94.0% of all nodes
(Table 3). Non-Ethereum services fall into one of two categories:
complementary services that fulfill the “world computer” vision
of the Ethereum foundation [27] and competitive services that op-
erate their own protocol and blockchain rather than utilize the
Ethereum blockchain as their underlying computational platform.
Complementary protocols on the DEVp2p peer network include
the Swarm decentralized storage service (6,579 peers), the Whisper

anonymized communication protocol (1,622 peers), and light client
protocols (5,376 peers)—such as LES, Light Ethereum Subprotocol,
and PIP, Parity Light Protocol—that only validate subsections of
the Ethereum blockchain. Competing protocols include Istanbul
BFT [58], DubaiCoin [2], MOAC Mother Of All Coins [44], and
32 others, which combined constitute 7,849 peers and 2.2% of the
overall DEVp2p network.

Within the Ethereum subprotocol, peers can be configured to
operate on different Ethereum networks and blockchains via the
networkID and genesisHash (i.e., hash of the genesis/first block)
fields of the STATUS message. From Ethereum STATUS messages re-
ceived from 323,584 nodes, we found a wide and substantial range of
4,076 networks and 18,829 genesis hashes (Figure 9). The Ethereum
blockchain underlying the second most valuable cryptocurrency ex-
ists on network 1 (i.e., Mainnet) at genesis hash d4e567. . . cb8fa3—
only 176,482 (54.5%) of Ethereum peers had this configuration. We
further distinguished these peers by checking for their DAO fork
block and found that 3,386 were Ethereum Classic nodes, yielding
a total of 173,096 useful Ethereum peers. 97,074 peers were defini-
tively non-Classic peers, and the other 76,022 did not provide a
definitive response likely because they had not yet synchronized
up to the DAO fork block.

After Mainnet, the largest networks were Ropsten (4.6%) and
Rinkeby (4.6%), two official test networks, followed by a host of
alternative cryptocurrencies including Musicoin (1.5%), Pirl (1.5%),
and Ubiq (1.1%). The long tail of networks represents both the
popularity of the Ethereum P2P stack as a base for new alternative
blockchains as well as instances of unexpected configurations. For
instance, 1,402 networks were only observed for a single peer, and
we also observed 10,497 instances of a non-Mainnet peer advertising
the Mainnet genesis hash across 1,459 networks. While some of
these nodes and networks may be the result of misconfiguration,
we cannot confidently attest to the intent behind these use cases.
This remains an area for future work.

By design, the peer-to-peer network underlying Ethereum (i.e.,
RLPx and DEVp2p) supports multiple coexisting protocols and
blockchain networks. This is in contrast with other cryptocur-
rencies such as Bitcoin, Litecoin, and Monero, which define spe-
cific ports to provide network-level isolation for different main
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networks and test networks. In effect, clients operating on these
cryptocurrency P2P networks rarely connect to useless peers. By
recording peer information for Ethereum’s overlay P2P network,
we find an assortment of non-Ethereum protocols and compet-
ing blockchains that in total account for 48.2% of the overall P2P
ecosystem and can potentially generate significant network noise
for non-Classic Ethereum Mainnet clients. This is a direct conse-
quence of Ethereum’s flexible design and application-level isolation
for distinct services and blockchains.

6.2 Client Heterogeneity

After narrowing down to non-Classic Mainnet Ethereum peers, we
examine the client implementations being used on the network. In
total, Geth, the official Go client, accounts for 76.6% of all Ethereum
peers, followed by Parity, an unofficial Rust client, at 17.0% of (Ta-
ble 4). The remaining 31 clients make up 6.4% of all peers. The
third most common client at 5.2% of the network is an unofficial
JavaScript client, which could provide an avenue to cryptojacking
web clients to mine Ether.

To understand the dynamics of client updates and adoption in
Ethereum, we recorded the client versions for Geth and Parity. We
find that Geth nodes primarily operated stable releases (81.9% of
Geth nodes), but only 56.2% of Parity nodes were stable (Table 5).
The most up-to-date stable releases, namely Geth v1.8.12 and Par-
ity v1.10.9, constitute only 0.6% of Geth nodes and 0.1% of Parity

Client Count Percentage
Geth 132,554 76.58%
Parity 29,489 17.04%
ethereumjs-devp2p 8,919 5.15%
teth 782 0.45%
Ethereum(J) 659 0.38%
28 others 693 0.40%

Table 4: Ethereum Mainnet Clients—Geth accounts for
nearly 3 out of every 4 nodes detected. Of the top 3 clients,
which represent 98.77% of all nodes, only Geth is an official
implementation.

Geth Ver. Count (%) ‘ Parity Ver. Count (%)
v1.8.2-S 31,244 (23.57%) | v1.10.6-S 6,632 (22.49%)
v1.8.11-S 13,750 (10.37%) | v1.10.4-S 1,698 (5.76%)
v1.8.10-S 13,618 (10.27%) | v1.11.1-U 1,471 (4.99%)
v1.8.8-S 9,573 (7.22%) | v1.10.1-U 1,431 (4.85%)
v1.8.7-S 7,236 (5.46%) | v1.11.3-U 1,399 (4.74%)
v1.7.3-S 6,373 (4.81%) | v1.9.7-S 1,293 (4.38%)
v1.7.2-S 6,037 (4.55%) | v1.9.5-S 1,177 (3.99%)
v1.8.6-S 4,934 (3.72%) | v1.10.3-S 1,099 (3.73%)
v1.8.3-S 4,142 (3.12%) | v1.10.2-U 1,093 (3.71%)
v1.8.4-S 3,449 (2.60%) | v1.7.8-S 878 (2.98%)
101 others 32,198 (24.29%) | 99 others 11,318 (38.38%)
Total 132,554 (100%) | Total 29,489 (100%)

Table 5: Geth and Parity Versions—The top 10 Geth and Par-
ity versions’ build types are labeled as (S)table or (U)nstable.
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nodes. This is not surprising as they were released on July 5th and
7th respectively and our data collection stopped on July 8th. The
difference between the two clients’ deployment approach becomes
more clear as we look at older versions. Among the Geth’s top 10
versions, we find the 8 most recent stable versions (excluding v1.8.5
and v1.8.9 which were quickly replaced with next iterations to fix
deadlock issues [52]). The positive correlation between a version’s
freshness and its popularity indicates steady and uniform deploy-
ments of updates. This is achieved by Geth’s simple deployment
cycle: as current unstable version’s status updates to stable, next
version number is given the unstable status and its development
begins. In comparison, we find both stable and unstable releases
and various versions among the Parity population’s top 10 versions.
This is because newer versions of Parity are released at various
states (e.g., stable, beta, and release candidate) every week [48]. The
fast-paced development cycle also explains why Parity’s version
distribution is more sparse than Geth’s.
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Figure 10: Geth Version Distribution over Time—Upon a new
version release, number of nodes running the new version
sharply increases as the previous version’s population starts
declining.

While we observe majority of Geth and Parity nodes updating
to new versions, Figure 10 shows an insignificant number of Geth
nodes continuing to run old versions. On July 8th (the last date
in our dataset), 68.3% were running versions older than 2 itera-
tions (v1.8.10 or lower). The population of v1.7.2 and v1.7.3 has
been slowly decreasing but almost 1K nodes were still running
them. Although newer versions do not necessarily provide better
compatibility, security, or performance, some versions, like v1.7.1
the first version fully compatible with Byzantium hardfork [20],
implement substantial changes required to remain compatible with
the network or to fix critical bugs. We find 3.5% of the Geth nodes
running versions older than v1.7.1, most likely unable to move past
the hardfork block.

6.3 Geth/Parity Friction

While examining RLPx connections between Parity and Geth nodes,
we discovered an incongruity between Parity’s XOR metric and
Geth XOR metric. Specifically, Geth implements the log distance
metric correctly by calculating the log distance on the XOR of two
node IDs’ Keccak-256 hashes. Parity, on the other hand, calculates
the log distance on each byte of the XOR value and sums them
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(see Appendix A). These differing log distance calculations for Geth
(ldg) and Parity (Idp) have the following relationship:

ldp(x.y) = ldg(x.y) = y =290 _1 (1)
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Figure 11: Geth/Parity Node Distance Dist.—We simulated
100K random distance calculations for Geth and Parity. Par-
ity calculates node distance improperly and generates a
vastly different range and binomial distribution, while Geth
demonstrates an exponential distribution.

As shown in Figure 11, we simulated the node distance distribu-
tion for both Geth and Parity (100K trials each) to demonstrate the
disparity between the two client types. This differing behavior does
not break Geth and Parity compatibility, but it likely hampers the
performance of RLPx node discovery. In the best case, Parity peers
are effectively useless during Geth’s recursive FIND_NODE process
for converging on nodes closest to a randomly generate node ID.
In the worst case, a Geth node with a Parity-saturated RLPx table
could fail to discover new nodes since no NEIGHBORS response mes-
sages would contain new, close nodes for Geth to iterate on. This is
effectively an unintentional eclipse attack that could arise naturally
on the Ethereum network. Because our measurement does not infer
peer topology, we cannot verify whether this inadvertent attack
occurs in the wild.

7 P2P COMPARISON
7.1 Network Size

In order to make a fair comparison between our results and the
previously reported sizes of Ethereum, Bitcoin, and Gnutella’s P2P
network, we counted the number of nodes seen over a 24 hour
period on April 23rd. This is the same period we considered for our

Network Date Size
Ethereum (NodeFinder) 04/23/2018 15,454
Ethereum (Ethernodes [22]) 04/23/2018 4,717
Ethereum (Gencer et al. [26]) - 4,302

Bitcoin (Bitnodes [1]) 04/23/2018 10,454
Gnutella (SNAP [37]) 08/31/2002 62,586
Table 6: P2P Network Size—NodeFinder observes 2.3X more
Ethereum nodes than prior methods. Bitnodes and Gencer
et al. only connect to publicly-reachable nodes, while
NodeFinder and Ethernodes’ measure incoming, publicly

unreachable nodes as well.
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external validation (Section 5.3), and we exclude abusive nodes (Sec-
tion 5.4) from the dataset. Table 6 summarizes our findings. Com-
pared to other Ethereum measurements [22, 26], NodeFinder is able
to find 2.3 times more nodes. On the other hand, Ethereum’s 15,454
nodes is significantly smaller than the 62,586 node Gnutella net-
work as measured by Leskovec and Krevl of Stanford’s SNAP [37]
in August 2002. Both Gencer et al. [26] and Bitnodes measured
publicly-reachable nodes only and reported 4,302 and 10,454 re-
spectively.

While the 24-hour period snapshot provides a view sufficient for
comparing with other P2P networks, it does not provide a good rep-
resentation of the network’s instantaneous state as it is influenced
by both IP churn and node churn. To better estimate the state of
the Mainnet, we look at 8,309 nodes seen during a one hour period
between between 1pm and 2pm on May 8th of 2018 (UTC). We
observed 6,599 nodes that support the DAO fork and 518 Classic
nodes that oppose the fork. In the following sections, we look at
distribution of the 6,760 non-Classic Ethereum Mainnet nodes from
this 1-hour snapshot, including 161 nodes that have not yet reached
the DAO fork block and can potentially become peers on either
network. This dataset is used for subsequent snapshot analysis.

7.2 Geography and Network Distribution

Ethereum connectivity is determined by random node ID lookups,
which are independent of geographic location or network address.
However, understanding Ethereum’s geographic and network dis-
tribution can still inform which countries and autonomous systems
(ASes) have the largest potential impact on Ethereum. In Figure 12,
we find 43.2% of the Mainnet nodes operating in the US, 12.9% in
China. From an AS perspective, we see that the top 8 ASes account
for 44.8% of nodes and are all cloud hosting providers including
Amazon, Alibaba, Digital Ocean, OVH, Hetzner, and Google. This
suggests that Ethereum nodes operate primarily in cloud environ-
ments, rather than residential or commercial networks.

Figure 12: Geographic Distribution—The top 3 countries by
number of Ethereum nodes are US (43.2%), China (12.9%),
and Germany (5.2%). Ethereum is a random network by de-
sign, so geographic location should not affect network con-
nectivity.

In a previous study on the Gnutella network, Saroiu et al. [53]
measured latencies between their measurement node and Gnutella
peers to verify that the network is formed in an unstructured
(ad-hoc) way. To compare Ethereum P2P network’s latencies to
those of other P2P networks, we first calculated latencies based on
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Latency (ms)
Pct % Ethereum Gnutella [53] Bitcoin [26]

Ethereum [26]

Dir Tri Dir Tri Tri

10% 25 99 - 48 92

20% 51 116 70 - -
33% 101 151 - 79 125
50% 132 208 - 109 152
67% 192 231 - 152 200

80% 228 247 280 - -
90% 250 285 - 286 276
Avg. 302 209 - 135 171
Std. Dev. 267 157 - 88 76

Table 7: P2P Peer Latencies—Our triangle (Tri) inequality es-
timate yields latency estimates similar to a prior Ethereum
study [26], which revealed a higher average latency and
std. dev. than Bitcoin. Direct (Dir) connection measurement
demonstrates lower latency than Gnutella.

smoothed round-trip times measured on direct connections, which
NodeFinder recorded for every peer connection as explained in
Section 4. Gencer et al. [26] utilized the triangle inequality tech-
nique [24] for estimating lower and upper bounds between two
remote nodes. We used the average of the bounds to estimate la-
tency. Table 7 summarizes the latencies for Gnutella, Bitcoin, and
Ethereum. Our Ethereum measurements parallel the measurements
by Gencer et al. and revealed a higher latency and broader distribu-
tion than Bitcoin, which indicates that Ethereum is likely formed
in a random, ad hoc manner.

7.3 Client Age

In Figure 13, we tracked how often Ethereum node operators update
their clients by manually labeling Geth and Parity versions with
their release dates. Nearly 50% of Parity clients and 75% of Geth
clients are less than three months old. This resembles the BitTorrent
network in 2007, when 50% of BitTorrent clients were found to be
than 3 months old [12]. Because Geth has been in development
for a longer period of time, we find a larger proportion of old (> 4
months) Geth clients than Parity clients. On the flip side, we see that
active Geth updaters are more up-to-date than Parity clients, despite
the fact that Parity supports configurable automatic upgrades, and
Geth does not. As noted in Section 6.2, delayed updates can lead to
vulnerable nodes that may even become incompatible with other
nodes on the network in the event of a hardfork or other breaking
changes.

7.4 Node Freshness

We evaluate node freshness based on how close the peers were to
the head of the blockchain during the analyzed time frame. Fig-
ure 14 shows the CDF of node freshness based on block numbers
determined from the bestHash field of the peers’ STATUS messages.
We observe that 32.7% of the nodes were stale and did not actively
contribute to the Ethereum network as they couldn’t have validated
and propagated transactions with unsynced blockchains. Addition-
ally, 141 nodes were found to be stuck at block 4,370,001—the first
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Figure 13: Ethereum Client Age—Approximately 50% of Par-
ity clients and 75% of Geth clients are less than 100 days old.
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Figure 14: Node Freshness—67.3% of nodes are up-to-date
with the Ethereum blockchain. 2% are stuck at the Byzan-
tium hardfork block.

block after the Byzantium hardfork—most likely due to running
versions incompatible with the hardfork as discussed in Section 6.2.
The stale one-third may be closely related to the network’s churn
rate or incorrect implementations of the node discovery algorithm
resulting in failure to maintain uniformly random network topol-
ogy uniform and low diameter. This remains an area for future
work.

8 DISCUSSION

Our deployment of NodeFinder shed light on the size, decentral-
ization, performance, and behavior of the Ethereum P2P network
from both a longitudinal ecosystem view, as well as a single snap-
shot. We found evidence of multiple network inefficiencies and
other areas of concern including outdated clients susceptible to
patched vulnerabilities and hardfork incompatibility. These discov-
eries point to a rapidly changing, immature network that has yet
to effectively adopt some of the best practices established by other
network systems. These include:

Automatic updates. Although Ethereum exhibits client update
rates similar to previously studied file-sharing P2P networks,
Ethereum clients would benefit greatly from aggressive automatic
updates since vulnerabilities can and have resulted in major finan-
cial consequences [25, 49]. Coincidentally, Ethereum clients are
inherently always online and good candidates for updates.

Improved standardization. RLPx, DEVp2p, and Ethereum subpro-
tocol are generally viewed as being insufficiently documented [26,
40], which reflects our experience while investigating them. Poor
standardization of Ethereum’s network protocols is a likely contrib-
utor to conflicting client implementations such as Parity’s miscalcu-
lated XOR metric. Comprehensive documentation and a reference
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test specification would reduce the incongruences between different
clients and improve overall network efficiency.

Active monitoring. More broadly, our characterization of the
Ethereum P2P network highlights the importance of active mon-
itoring as a tool for improving network robustness via measure-
ments of its performance, availability, and security. Systems similar
to NodeFinder in other domains have been useful for identifying
network issues, notifying affected parties, and ultimately deploying
mitigations [1, 17]. NodeFinder is an open-source foundation for
future Ethereum studies and monitoring efforts. We plan to extend
Ethereum monitoring with new ethical measurement techniques
to further understand Ethereum’s peer topology and its relation to
Ethereum’s application layer.

9 RELATED WORK

The main value of Ethereum (and cryptocurrencies in general)
is to provide distributed, decentralized consensus on valid trans-
actions and smart contracts. Formal modeling has demonstrated
the fault tolerance of Bitcoin [42] when Byzantine faults account
for less than half of the network, with similar results applying to
Ethereum [7]. Several replacement Byzantine consensus protocols
have been proposed to improve scalability and reduce consensus
latency [23, 34].

In practice, the performance and robustness of Byzantine con-
sensus protocols are highly reliant on network connectivity, which
can cause a small number of failures to translate into a large num-
ber of Byzantine faults. For instance, certain network topologies
can be fully partitioned by a few network failures, leading to large
subgraphs that are considered Byzantine faults. Network topology
is especially important in random graph networks, and many al-
gorithms have been proposed for distributed consensus in sensor
networks [32, 33, 45]. Ethereum also operates on a random graph by
design, but no work has examined the properties of the Ethereum
network, leaving the possibility of brittle network and high con-
sensus delay. Initial evaluation of information propagation in the
Bitcoin network has demonstrated that slow consensus can lead
to high occurrence of forks, which further delays consensus and
increases wasted computation [13].

Insight into Bitcoin’s P2P network has previously exposed
a network-level vulnerability that enabled application level at-
tacks [31]. Specifically, an attacker could monopolize all peer con-
nections on a victim node and effectively launch selfish mining,
adversarial forks, and double spending attacks. To our knowledge,
only Gencer et al. have previously examined Ethereum’s network
properties to quantify the degree of decentralization. By measur-
ing Ethereum’s provisioned bandwidth and pairwise peer latency,
the authors observed that Ethereum nodes are more widely dis-
tributed than Bitcoin nodes but have less spare bandwidth. The
study does not explore the RLPx or DEVp2p layers of Ethereum’s
P2P network; further, they provide no indication that they focus on
Ethereum’s network to the non-Classic Mainnet nodes which under-
lie the cryptocurrency. From an adversarial perspective, two very
different eclipse attacks have been demonstrated. The first attack
poisoned the blockchain synchronization process to continuously
feed malicious blocks to the victim, and prevent it from advancing
its blockchain [57]. The second set of attacks, introduced by Marcus
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et al. targets the RLPx peer establishment process by overwhelming
monopolizing a node’s peer table, which is flushed immediately af-
ter reboot [40]. They also introduce an orthogonal attack that relies
on compromising a node’s NTP service. This paper complements
these studies by uncovering the applicability and potential impact
of such attacks, in addition to identifying other network properties
or incongruences relating to availability or security.

Outside of the cryptocurrency domain, there has been much
effort on studying properties of P2P networks, particularly in file
sharing systems. Saroiu et al. crawled the Napster and Gnutella
networks and identified their properties, such as population, bot-
tleneck bandwidths, latencies, availability, churn, and degree of
connections [53]. Qiao et al. performed a combination of passive
and active measurement on Gnutella and Overnet networks and
evaluated their resilience, message overhead, and query perfor-
mance [51]. Pouwelse et al. studied the BitTorrent network over
a period of 8 months and found that the network suffers from the
unavailability of the network’s central components, such as seed
trackers. Dinger et al. analyzed performance of two decentralized
bootstrapping approaches—namely local host caches and random
address probing—in the BitTorrent network [16]. We perform di-
rect comparison of these networks with Ethereum’s P2P network
throughout the study.

10 CONCLUSION

Due to their ballooning financial value, the robustness (i.e., perfor-
mance, availability, and security) of cryptocurrencies has recently
come under high scrutiny. Recent work investigating the peer-to-
peer network underlying Bitcoin has demonstrated that network
robustness is imperative for proper blockchain operation. In this
work, we developed NodeFinder, a novel monitoring tool that pro-
vides an unprecedented view of Ethereum’s network ecosystem.
We uncovered a cluttered network that contains thousands of nodes
running various non-Ethereum services. Compared to other P2P
networks, Ethereum exhibits similar network performance prop-
erties, but also shows hallmark signs of a small, immature P2P
network that would benefit greatly from adoption of known best
practices and additional examination of the concerns presented in
the paper.
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&H256, b:
*b;

&H256) -> u32 {

*xa *

let mut ret:u32 = 0;

//
for i

iterate over each byte of 256-bit Keccak hash
in 0..32 {
let mut v: u8 = d[i];
// get the position of first non-zero bit
while v != 0 {

v >>= 1;

ree = g

ret


https://www.arabianchain.org/
https://www.arabianchain.org/
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://coinmarketcap.com/
https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/
https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/
https://www.ethereum.org/ether
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://github.com/ethereumjs/ethereumjs-devp2p/releases
https://github.com/ethereumjs/ethereumjs-devp2p/releases
https://www.ethernodes.org/network/1
https://arstechnica.com/information-technology/2017/11/with-deletion-of-one-wallet-280-m-in-ethereum-wallets-gets-frozen/
https://arstechnica.com/information-technology/2017/11/with-deletion-of-one-wallet-280-m-in-ethereum-wallets-gets-frozen/
https://arstechnica.com/information-technology/2017/11/with-deletion-of-one-wallet-280-m-in-ethereum-wallets-gets-frozen/
https://blog.ethereum.org/2014/08/18/building-decentralized-web/
https://github.com/ethereum/wiki/wiki/What-is-Ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum/releases/tag/1.2.1
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EVp2p-Wire-Protocol
https://github.com/ethereum/devp2p/blob/master/discv4.md
https://snap.stanford.edu/data/p2p-Gnutella31.html
https://snap.stanford.edu/data/p2p-Gnutella31.html
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://eprint.iacr.org/2018/236
https://nakamotoinstitute.org/static/docs/anonymous-byzantine-consensus.pdf
https://nakamotoinstitute.org/static/docs/anonymous-byzantine-consensus.pdf
https://moac.io/
https://github.com/paritytech/parity
https://github.com/paritytech/parity-ethereum/releases
https://github.com/paritytech/parity-ethereum/releases
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-than-50-million-from-experimental-cybercurrency-project.html
https://ethereum.stackexchange.com/a/199
https://github.com/ethereum/wiki/wiki/Releases
https://github.com/ethereum/wiki/wiki/Releases
https://github.com/ethereum/go-ethereum/pull/1889
https://gavwood.com/paper.pdf
https://github.com/ethereum/wiki/wiki/libp2p-Whitepaper
https://github.com/ethereum/EIPs/issues/650

	Abstract
	1 Introduction
	2 Background
	2.1 RLPx
	2.2 DEVp2p
	2.3 Ethereum Subprotocol

	3 Case Study
	4 DEVp2p NodeFinder
	5 Measurements
	5.1 Measurement Ethics
	5.2 Internal Validation
	5.3 External Validation
	5.4 Data Sanitization
	5.5 Limitations

	6 Peer Ecosystem
	6.1 Non-productive Peers
	6.2 Client Heterogeneity
	6.3 Geth/Parity Friction

	7 P2P Comparison
	7.1 Network Size
	7.2 Geography and Network Distribution
	7.3 Client Age
	7.4 Node Freshness

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Parity Node Distance

